Fertilität: Mit Omega-3-Fettsäure gegen männliche Unfruchtbarkeit

Auch für Spermazellen essentiell: Docosahexaensäure - eine der wichtigsten Fettsäuren für den menschlichen Körper. DHA ist ein integraler Bestandteil aller Zellmembranen. Sie ist unersetzlich für die Entwicklung des Gehirns und der Augen und schützt das Nervensystem, Augen und Herz-Kreislauf-System vor degenerativen Erkrankungen.

Die so genannte Docosahexaensäure (DHA), eine essentielle Omega-3-Fettsäure, kann bei männlicher Unfruchtbarkeit wirksam sein. Dies ist das Ergebnis einer US-amerikanischen Studie der Universität Illinois, die die Zusammensetzung und Funktionsfähigkeit der Spermienstruktur untersuchte.

Das Team um Prof. Manabu Nakamura, Professor für biochemische und molekulare Ernährung, analysierte den Aufbau und die Funktionsfähigkeit von Spermazellen bei genetisch manipulierten unfruchtbaren Mäusen, deren die essentielle Omega-3-Fettsäure DHA fehlte.
Für die Wissenschaftler zeigte sich, dass DHA für die bogenartige Form der Spermienzellen verantwortlich zu sein scheint, die für die Fortbewegung des Spermiums notwendig ist. “Normale Samenzellen besitzen eine bogenförmige Struktur namens Akrosom, um in die weibliche Eizelle eindringen zu können,” erklärt Prof. Nakamura. Die Spermienzellen bei den genmanipulierten Tieren hingegen wiesen eine runde nicht-längliche Form auf, was die Spermien daran hinderte, ihr Ziel zu erreichen. Zudem war die Anzahl der Spermien geringer als bei den Kontrolltieren. “Wir betrachteten Spermienzahl, -Form und Mortalität. Die männlichen Mäuse, denen die Omega-3-Fettsäure fehlte, waren im Grunde unfruchtbar,” so der Leiter der Studie. Das um so bemerkenswertere: Wurde denselben Mäusen DHA über die Nahrung zugefüttert, konnten diese Anomalien beseitigt und die Fertilität wiederhergestellt werden. Die Studie zeige zum ersten Mal, dass Docosahexaensäure von wesentlicher Bedeutung für die Verbindung der Bausteine ​​des Akrosoms zu sein scheint. „Fehlt DHA kann diese lebenswichtige Struktur nicht gebildet werden und die Samenzellen sind nicht funktionsfähig,” sagt Timothy Abbott, mitwirkender Doktorand der Studie. Das Akrosom ist eine bogenförmige Struktur, die den Kopf des Spermiums halb überzieht und durch eingelagerte Enzyme zur Steuerung der Spermazelle beim Eindringen in die Eizelle dient.

Bei den Versuchstieren konnte durch die gezielte Zufuhr an Docosahexaensäure eine Wiederstellung der Fertilität erzielt werden. Inwieweit diese Ergebnisse auf die Verbesserung der Spermienqualität des Menschen übertragen werden können, wird derzeit noch erforscht. Die Wissenschaftler scheinen jedoch zuversichtlich: Die Bedeutung der Docosahexaensäure als integraler Bestandteil verschiedener Orange und Funktionen wurde in vielen früheren Studien belegt. So gilt die langkettige Omega-3-Fettsäure bereits als Schlüsselkomponente von Hirn (und Nervensystem), Herz und Augen.

Quelle: Roqueta-Rivera M. et al. Deficiency in the Omega-3 Fatty Acid Pathway Results in Failure of Acrosome Biogenesis in Mice. Biology of Reproduction. 2011; 85 (4):721.

Weiterführende Quellen: Wikipedia-Eintrag zur Docosahexaensäure

Vitamin C

Zitrusfrüchte wie Orangen, Zitronen und Grapefruits enthalten in reifem Zustand unmittelbar nach der Ernte viel Vitamin C. Der Gehalt sinkt jedoch mit jedem Tag der Lagerhaltung.

Beschreibung

Das wasserlösliche Vitamin C, auch Ascorbinsäure genannt, ist das wichtigste Antioxidans, das gleichzeitig innerhalb und außerhalb der Zelle aktiv ist. Ascorbinsäure ist aber auch für zahlreiche lebensnotwendige Körpervorgänge essentiell. Vitamin C ist an der Immunabwehr beteiligt, wichtig für den Aufbau von Bindegewebe und Knochensubstanz, den Hormon- und Neurotransmitter-Stoffwechsel, die Eisenaufnahme, die Folsäure-Aktivität (Zellbildung) und den Zellschutz.
Interessant: Lediglich Menschen, Menschenaffen und Meerschweinchen können Ascorbinsäure nicht selbst synthetisieren und sind auf die exogene Vitamin-C-Zufuhr über die Nahrung angewiesen. Pflanzen und die meisten Tiere hingegen sind fähig, das Vitamin dank eines speziellen Enzyms aus Glucuronsäure selbst herzustellen. Ohne Vitamin-C-Zufuhr entsteht beim Menschen ein subklinischer Skorbut: Vitamin C-Mangel schwächt die gesamte Immunabwehr und steigert das Risiko, Krebs zu entwickeln sowie degenerative Erkrankungen zu entwickeln.

Funktionen und Anwendungsbereiche

Funktionen
• Antioxidans
• Immunstärkung
• Bildung von Kollagen für Bindegewebe
• Aktivierung von Folsäure
• Bildung von Neurotransmittern
• Entgiftung
• Cholesterinabbau

Antioxidans

Vitamin C ist das wichtigste Antioxidans, das in flüssigen Bereichen außerhalb der Zelle wirksam ist. Vitamin C ist im Blut, in allen Körperflüssigkeiten und in der Zellflüssigkeit enthalten, wo es Zellen, Körpersubstanzen und die DNA vor der Oxidation durch freie Radikale schützt. Die antioxidative Wirksamkeit ist sowohl für die zelluläre als auch die humorale Immunabwehr wichtig. Vitamin C macht insbesondere toxische Sauerstoffradikale, wie Superoxide, Wasserstoffperoxid, Singulett-Sauerstoff sowie Hydroxyl- und Peroxylradikale unschädlich.

Immunstärkung

Vitamin C erhöht die Beweglichkeit und die Aktivität der Abwehrzellen, so dass diese schneller für immunologische Abwehrfunktionen bereitstehen. So steigert das Vitamin die Blutkonzentration an Interferon, das als Reaktion auf einen Virusinfekt gebildet wird.

Bildung von Kollagen für Bindegewebe

Vitamin C ist als Cofaktor zahlreicher Enzymsysteme essentiell z.B. bei der Kollagenbildung. Im kollagenen Binde- und Stützgewebe kommt es unter Mitwirkung von Vitamin C zur Bildung von Hydroxyprolin und Hydroxylysin. Diese beiden Bindegewebs-Eiweiße tragen zur Stabilisierung und Quervernetzung des Bindegewebes bei. Kollagen ist der Stabilität gebende Bestandteil verschiedener Körperteile wie Haut, Knochen, Knorpel, Sehnen und des Halteapparats der Zähne. Ascorbinsäure ist demzufolge für die Wundheilung, Narbenbildung und das Wachstum (Neubildung von Knochen, Knorpel und Zahnbein) unerlässlich.

Eisenstoffwechsel
Vitamin C verstärkt die Resorption und Verwertung von Eisen im Körper enorm. Das Vitamin hemmt die Komplexbildung von Eisen mit Phytaten (in Getreide, Mais, Reis sowie Vollkorn- und Sojaprodukten), Tanninen (in Kaffee und Tee) und Polyphenolen (in schwarzem Tee), welche die Eisenaufnahme hemmen. Indem Vitamin C deren Wirkung abschwächt, wird die Eisenaufnahme erhöht. Zudem stimuliert Vitamin C den Einbau in das Eisenspeicherprotein Ferritin und erhöht die Stabilität des so genannten Ferritin-Eisenkerns.

Bildung von Carnitin
Nur das gleichzeitige Vorhandensein von Vitamin C, Niacin und Vitamin B6 ermöglicht die Bildung von Carnitin. Carnitin ist eine vitaminähnliche Substanz, die die Energiebildung unterstützt. Ist nicht ausreichend Vitamin C vorliegend, geht der Carnitinspiegel zurück, die Energieproduktion kann sinken und es kann zu Muskelschwäche, Erschöpfungszuständen und bei einer gewünschten Gesichtsreduktion zu Stagnationen kommen.

Aktivierung von Folsäure
Vitamin C ist bei der Umwandlung von Folsäure in seine aktive Form als Tetrahydrofolsäure beteiligt und schützt das B-Vitamin vor oxidativen Schäden.

Entgiftung
Vitamin C wirkt aktivierend auf das entgiftende Enzymsystem der Leber, das das Blut reinigt und Giftstoffe unschädlich macht und ausscheidet.

Bildung von Neurotransmittern
Ascorbinsäure ist als Coenzym für eine Reihe von Hormonen zuständig. Neben der Synthese von Noradrenalin ist es auch für die Biosynthese von Adrenalin zuständig.

Anwendungsbereiche
• Gefäßschutz (Arteriosklerose)
• Eisenmangel
• Krebsprävention
• Abwehrstärkung
• Allergien
• Hämorrhoiden
• Knochenerkrankungen
• Katarakt, Glaukom, und Makula-Degeneration
• Wundheilung
• Zahnfleischschwund
• Entgiftung von Schwermetallen

Gefäßschutz (Arteriosklerose)
Vitamin C schützt die Gefäßinnenwände, das so genannte Endothel. Es ist damit wichtig für eine gesunde Gefäßfunktion, die Blutdruckregulierung und ein funktionierendes Herz-Kreislauf-System. Da es zudem die Ausscheidung von Cholesterin fördert und vor Oxidation des Cholesterins schützt, wirkt Vitamin C zweifach gefäßprotektiv.

Eisenmangel

Durch den resorptionsfördernden Einfluss unterstützt Vitamin C die Eisen-Supplementierung bei Eisenmangel resp. beugt klinischem Eisenmangel vor.

Krebsprävention

Durch seine zentrale Rolle im antioxidativen Schutzsystem und beim Schutz vor karzinogenen (krebsverursachenden Stoffen) senkt Vitamin C das Krebsrisiko bedeutsam. Im Besonderen konnte das für die Krebsarten des gesamten Verdauungstrakts und des Unterleibs nachgewiesen werden.

Abwehrstärkung
Zellen des Immunsystems besitzen etwa den 40-fachen Gehalt an Vitamin C im Gegensatz zu normalen Blutzellen.

Allergien, Asthma
Vitamin C besitzt eine Antihistamin-Wirkung. Es hat bei Asthma-Beschwerden, Lebensmittel-, Pollen- und anderen Allergien eine lindernde Wirkung.

Katarakt, Glaukom, und Makula-Degeneration

Augenerkrankungen im Alter sind degenerative Erkrankungen, deren Entstehung durch oxidativen Stress (freie Radikale) in großem Maße gefördert wird. Neben den Carotinoiden und Glutathion ist Vitamin C für den antioxidativen Schutz der Augen verantwortlich.

Entgiftung von Schwermetallen
Die Eigenschaft von Vitamin C, Stoffe zu binden und auszuscheiden, wird insbesondere bei akuten Schwermetallvergiftungen unterstützend eingesetzt.

Erhöhter Bedarf und Mangel

Häufigste Ursachen für erhöhten Bedarf
• Zufuhrmangel durch einseitige Ernährung, Reduktionsdiäten, Verzehr stark erhitzter oder lange gelagerter Nahrungsmittel (Vitamin C ist hitze-, licht- und sauerstoffempfindlich)
• hohe Stressbelastung, Leistungssport
• Zigaretten- und Alkoholkonsum
• Wachstumsphasen
• chronische Erkrankungen
• Immunschwäche
• Medikamenteneinnahme

Mangelsymptome
Der Name Ascorbinsäure leitet sich von der Vitamin C-Mangelerkrankung Skorbut ab, die durch Ascorbinsäure verhindert resp. geheilt werden kann. Dieser klinische Mangel an Vitamin C ist hierzulande höchst selten, aber auch latent zu geringe Aufnahmen haben ihre Folgen. Typische Symptome sind
• beeinträchtigte Bindegewebsbeildung
• Immunschwäche
• Infekt- und Stressanfälligkeit
• Leistungsschwäche, Müdigkeit, Abgespanntheit
• Hautveränderungen, raue Haut durch Ansammlung von Keratin in den Haarfollikeln
• Wundheilungsstörungen
• Zahnfleischbluten
• Allergieneigung


Zufuhrempfehlung und Einnahmehinweise

Zufuhrempfehlung
Eine allgemeine Prävention mit Vitamin C zwischen 200 und 1.000 mg wird allgemein empfohlen. Für therapeutische Zwecke (unter therapeutischer Empfehlung) kann sich die Zufuhr auf bis zu mehrere Gramm täglich steigern.

Gegenanzeigen/Überdosierung
Ein toxischer Effekt von Vitamin C ist nicht bekannt. Bei Megadosen von mehreren Gramm kann es zu Durchfall kommen. Die als sicher geltende tägliche Langzeit-Einnahme liegt bei 2.000 mg täglich.

Einnahmehinweis
In Kombination mit Bioflavonoiden wird Vitamin C besonders gut aufgenommen und verwertet.


Literaturquellen

1. Anderson JW, Gowri MS, Turner J,et al.: Antioxidant supplementation effects low density lipoprotein oxidation for individuals with type 2 diabetes mellitus. J Amer Coll Nutr . 1999;18:451-461.
2. Ausman LM.: Criteria and recommendations for vitamin C intake. Nutr Review . 1999;57(7):222-229.
3. Anderson TN, Suranyi B, Beaton GW.: The effect on winter illness of large doses of vitamin C. Can Med Assoc J 1974; 111: 31-38.
4. Braun BL, Fowles JB, Solberg L, et al. : Patient beliefs about the characteristics, causes, and care of the common cold: an update. J Fam Pract 2000; 49: 153-156.
5. Conte D., Brunelli L., Ferrario L. et al.: Effect of ascorbic acid on desferrioxamine-induced urinary iron excretion in idiopathic hemochromatosis. Acta Haematol; 72(2): 117-120. (1984).
6. Carr AC, Frei B.: Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am J Clin Nutr . 1999;69(6):1086-1107.
7. Cunningham J.: The glucose/insulin system and vitamin C: implications in insulin-dependent diabetes mellitus. J Amer Coll Nutr . 1998; 17:105-8.
8. Daniel TA, Nawarskas JJ.: Vitamin C in the prevention of nitrate tolerance. Ann Pharacother . 2000;34(10):1193-1197.
9. Diplock AT.: Safety of antioxidant vitamins and beta-carotene. Am J Clin Nutr . 1995;62(6 Suppl):1510S-1516S.
10. Douglas RM, Chalker EB, Treacy B.: Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev . 2000;(2):CD000980.
11. Dreher F, Denig N, Gabard B, Schwindt DA, Maibach HI.: Effect of topical antioxidants on UV-induced erythema formation when administered after exposure. Dermatology . 1999;198(1):52-55.
12. Dreher F, Gabard B, Schwindt DA, Maibach HI.: Topical melatonin in combination with vitamins E and C protects skin from ultraviolet-induced erythema: a human study in vivo. Br J Dermatol. 1998;139(2):332-339.
13. Duffy S, Gokce N, Holbrook M, et al.: Treatment of hypertension with ascorbic acid. Lancet . 1999;354:2048-2049.
14. Domingo J., Gomez M., Llobet J. et al.: Effect of ascorbic acid on gastrointestinal aluminum absorption (letter). Lancer; 338(8780): 1467. (1991).
15. Eberlein-Konig B, Placzek M, Przybilla B.: Protective effect against sunburn of combined systemic ascorbic acid (vit.C) and D-alpha-tocopherol (vit.E). J Am Acad Dermatol . 1998;38:45–48.
16. Enstrom JE, Kanim LE, Klein MA.: Vitamin C intake and mortality among a sample of the United States population. Epidemiology . 1992;3(3):194-202.
17. Elwood PC, Hughes SJ, St Leger AS.: A randomized controlled trial of the therapeutic effect of vitamin C in the common cold. Practitioner 1977; 218: 133-137. Eipper B.A., Mains R.E. The role of ascorbate in the biosynthesis of neuroendocrine peptides. Am J Clin Nutr. : 54; 1153S-6S (1991)
18. Frei B.: On the role of vitamin C and other antioxidants in atherogenesis and vascular dysfunction. Proc Soc Exp Biol Med . 1999;222(3):196-204.
19. Fuchs J, Kern H.: Modulation of UV-light-induced skin inflammation by D-alpha-tocopherol and L-ascorbic acid: a clinical study using solar simulated radiation. Free Radic Biol Med. 1998;25(9):1006-1012.
20. Ginter E., Zloch Z. Influence of vitamin C status on the metabolic rate of a single dose of ethanol-1-(14)C in guinea pigs. Physiol Res.: 48; 369-73 (1999)
21. Gandini S, Merzenich H, Robertson C, Boyle P.: Meta-analysis of studies on breast cancer risk and diet: the role of fruit and vegetable consumption and the intake of associated micronutrients. Eur J Cancer . 2000;36:636-646.
22. Gokce N, Keaney JF, Frei B, et al.: Long-term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation . 1999;99:3234-3240.
23. Gonzalez J, Valdivieso A, Calvo R, Rodriguez-Sasiain J, et al.: Influence of vitamin C on the absorption and first pass metabolism of propranolol. Eur J Clin Pharmacol . 1995;48:295-297.
24. Gorton HC, Jarvis K.: The effectiveness of vitamin C in preventing and relieving the symptoms of virus-induced respiratory infections. J Manipulative Physiol Ther.
25. Hemilia H.: Vitamin C intake and susceptibility to the common cold. Br J Nutr. 1997;77(1):59-72.
26. Hemilia H, Douglas RM.: Vitamin C and acute respiratory infections. Int J Tuberc Lung Dis . 1999;3(9):756-761.
27. Herbert V., Jacob E.: Destruction of vitamin B12 by ascorbic acid. JAMA 1974; 230:241-242. (1974).
28. Informations- und Dokumentationsstelle am Institut für Ernährungswissenschaft der Justus-Liebig-Universität Giessen (1991).
29. Johnston CS, Martin LJ, Cai X.: Antihistamine effect of supplemental ascorbic acid and neutrophil chemotaxis. J Am Coll Nutr. 1992;11:172-176.
30. Kaur B, Rowe BH, Ram FS.: Vitamin C supplementation for asthma. Cochrane Databse Syst Rev . 2001;4:CD000993.
31. Karlowski TR, Chalmers TC, Frenkel LD, et al.: Ascorbic acid for the common cold. A prophylactic and therapeutic trial. JAMA 1975; 231: 1038-1042.
32. Lee M, Chiou W.: Mechanism of ascorbic acid enhancement of the bioavailability and diuretic effect of furosemide. Drug Metab Dispos . 1998;26:401-407.
33. Levine GN, Frei B, Koulouris SN, Gerhard MD, Keaney FJ, Vita JA.: Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation . 1996;93:1107-1113.
34. Levine M, Rumsey SC, Daruwala R, Park JB, Wang Y.: Criteria and recommendations for vitamin C intake. JAMA . 1999;281(15):1415-1453.
35. Levine M, Wang Y, Padayatty SJ, Morrow J.: A new recommended dietary allowance of vitamin C for healthy young women. PNAS . 2001;98(17):9842-9846.
36. Levy. Beta-carotene affects antioxidant status in non-insulin dependent. Pathophysiology . 1999;6(3):157-161.
37. McAlindon M, Muller A, Filipowicz B, Hawkey C.: Effect of allopurinol, sulphasalazine, and vitamin C on aspirin induced gastroduodenal injury in human volunteers. Gut . 1996;38:518-524.
38. McDonald L., Thumser A.E., Sharp P.: Decreased expression of the vitamin C transport SVCT 1 by ascorbic acid in a human intestinal epithelial cell line. Br. J. Nutr. 87: 97-100 (2000)
39. Mackerras D, Irwig L, Simpson JM, et al. : Randomized double-blind trial of beta-carotene and vitamin C in women with minor cervical abnormalities. Br J Cancer . 1999;79(9-10):1448-1453.
40. Morris MC, Beckett LA, Scherr PA, et al.: Vitamin E and vitamin C supplement use and risk of incident Alzheimer disease. Alzheimer Dis Assoc Disord . 1998;12:121-126.
41. Mosca L, Rubenfire M, Mandel C, et al.: Antioxidant nutrient supplementation reduces the susceptibility of low density lipoprotein to oxidation in patients with coronary artery disease. J Am Coll Cardiol . 1997;30:392-399.
42. Ness AR, Chee D, Elliot P.: Vitamin C and blood pressure – an overview. J Hum Hypertens. 1997;11:343-350.
43. Nyyssonen K, Parviainen MT, Salonen R, Tuomilehto J, Salonen JT.: Vitamin C deficiency and risk of myocardial infarction: prospective population study of men from eastern Finland. BMJ . 1997;314:634-638.
44. National Research Council: Vitamin C. Recommended Dietary Allowances, 10th ed. National Academy Press, Washington, DC; (1998).
45. Otsuka M., Matzusawa M., Ha T.Y., Arakawa N.: Contribution of a high dose of L-ascorbic acid to carnitine synthesis in guinea pigs fed high-fat diets.
J Nutr Sci Vitaminol. : 45; 162-71 (1999).
46. Pauling L.: The significance of the evidence about ascorbic acid and the common cold. Proc Natl Acad Sci USA 1971; 68: 2678-2681.
47. Rees D., Kelsey H., Richards J.: Acute haemolysis induced by high dose ascorbic acid in glucose-6-phosphate dehydrogenase deficiency. BMJ 306(6881): 841-842. (1993).
48. Schectman G.: Estimating ascorbic acid requirements for cigarette smokers. Ann NY Acad Sci 1993; 686:335-346. (1991).
49. Schmidt, Dr. med. E., Schmidt, N.: Leitfaden Mikronährstoffe. 124-132, 142-146
Urban & Fischer Verlag; München, Februar (2004).
50. Slain D., Amsden J., Khakoo R, et al.: Effect of high-dose vitamin C (Vit C) on the steady-state pharmacokinetics (PK) of the protease inhibitor (PI) indinavir (IDV) in healthy volunteers (abstract A-1610). Presented at the 43rd Interscience Conference On Antimicrobial Agents and Chemotherapy; September 14-17, 2003; Chicago, IL, USA. (1991).
51. Suzuki E., Kurata T., Shibata M., Mori M., Arakawa N.: Activities of D- and L-xyloascorbic acid and D- and L-araboascorbic acid as cofactor for dopamine beta-hydroxylase reaction. J Nutr Sci Vitaminol.: 43; 491-6 (1991).
52. Tyrrell DA, Craig JW, Meada TW, White T.: A trial of ascorbic acid in the treatment of the common cold. Br J Prev Soc Med 1977; 31: 189-191.
53. Takkouche B, Regueira-Mendez C, Garcia-Closas R, Figueiras A, Gestal-Otero JJ.: Intake of vitamin C and zinc and risk of common cold: a cohort study. Epidemiology . 2002;13(1):38-44.

 

Weiterführende Quellen:

Wikipedia-Eintrag zu Vitamin C

Vitamin-C-Artikel auf Vitaminwiki.net

 

Vitamin B12 (Cobalamin)

Vitamin B12 (Cobalamin) spielt eine wichtige Rolle bei der Bildung der Erythrozyten (rote Blutkörperchen)

Beschreibung

Das B-Vitamin B12, auch Cobalamin genannt, ist für die Entstehung und Entwicklung der roten Blutkörperchen verantwortlich. Ebenso hat es eine Schlüsselbedeutung im Nervensystem und ist am Stoffwechsel von Eiweißstoffen, Aminosäuren und Nukleinsäuren beteiligt.
Obwohl Vitamin B12 im Gegensatz zu den anderen wasserlöslichen Vitaminen in der Leber über Jahre gespeichert werden kann, zählt der Vitamin-B-12-Mangel zu den häufigsten Vitamin-Mangel-Erkrankungen. Die Gründe hierfür liegen vor allem in der leichten Störanfälligkeit des komplexen Resorptionsvorgangs von Vitamin B12 in der Darmwand. Für die Aufnahme benötigt das Vitamin B12 nämlich einen bestimmten Eiweißstoff, den so genannten Intrinsic Factor. Menschen, die nicht genügend von dieser Substanz bilden können, leiden unter B12-Mangelerscheinungen. Regelmäßige Medikamenteneinnahmen sowie chronische Magenentzündungen behindern die Aufnahme von Vitamin B12. Bereits ein geringer Mangel jedoch kann zu starken Befindlichkeitsstörungen führen, da sowohl die Blutbildung (Sauerstofftransport) als auch das Nervensystem davon beeinflusst werden.

Funktionen und Anwendungsbereiche

Funktionen
• Zellbildung und Wachstum
• Aufbau von Amino- und Nukleinsäuren
• Blutbildung
• Fettsäure-Stoffwechsel
• Aktivierung von Folsäure
• Aufbau der Nervenhüllen
• Unterstützung der Funktionsfähigkeit des Zentralen Nervensystems
• Zellteilung und -entwicklung (DNS-Bildung)
• Entgiftung des schädlichen Homocysteins

Zellbildung und Wachstum
Vitamin B12 ist wie auch Folsäure essentiell für alle Zellbildungs- und Zellreifungsprozesse. Zusammen mit Folsäure ist Vitamin B12 unentbehrlich für die Synthese von DNA, dem genetischen Erbmaterial, und damit für die Zellteilung.

Aktivierung von Folsäure
Cobalamin ist eng mit dem Folsäure-Stoffwechsel verknüpft. Zur Umwandlung von Folsäure in seine aktive Form ist Vitamin B12 nötig. Steht kein Cobalamin zur Verfügung, kommt es zu einem Mangel an „funktionsfähiger“ (aktiver) Folsäure. Dies erklärt die Gleichheit vieler Mangelsymptome der beiden B-Vitamine.

Aufbau von Nervenhüllen

Vitamin B12 wird für die Bildung der so genannten Myelinscheiden benötigt, welche nervliche Impulse im Körper weiterleiten. Obwohl das Vitamin nur eine indirekte Rolle im Reizweiterleitungs-Prozess spielt, hat sich die Ergänzung mit Vitamin B12 auch als wirksam bei der Linderung verschiedener Nervenerkrankungen bewährt. Auch neurologische Störungen bei Diabetikern und Alkoholikern (Taubheit oder Kribbeln in den Beinen) sind Anwendungsgebiete von Vitamin B12.

Anwendungsbereiche
• Herz-Kreislauf-Erkrankungen
• Allergien
• Krebs
• psychische Störungen
• Störung des Nervensystems
• Verbesserung des Nervenstoffwechsels
• Steigerung von Appetit und Energie
• Perniziöse Anämie

Herz-Kreislauf-Erkrankungen
Ein erhöhter Homocystein-Spiegel entsteht durch einen Mangel an Vitamin B12, B6 und Folsäure. Präventiv und therapeutisch können mit Vitamin B12-, B6- und Folsäure-Gaben
gute Erfolge zur Senkung des Homocystein-Spiegels und des Arteriosklerose-Risikos erzielt werden.

Allergien
Cobalamin kann Hautallergien und Asthma entgegensteuern.

Perniziöse Anämie
Perniziöse Anämie ist die klassische Vitamin-B12-Mangelerkrankung. Mehr als 80% der Betroffenen sind dabei über 80 Jahre alt. Durch eine Schädigung der Nervenhüllen (Myelinscheiden) kommt es zu Empfindungsstörungen der Gliedmaßen sowie zu Muskelschwund und teilweise zu Spastiken.

Erhöhter Bedarf und Mangel

Häufigste Ursachen für erhöhten Bedarf
Erhöhter Cobalamin-Bedarf liegt signifikant häufig vor bei

• Erkrankungen des Magen-Darm-Traktes und Resorptionsstörungen
• Schwangerschaft und Stillzeit
• Veganer, Vegetarier, einseitige Ernährung
• älteren Menschen (>60)
• Rauchern
• hohem Alkoholkonsum
• Medikamenteneinnahme: z.B. Antidepressiva, orale Kontrazeptiva
• neurologischen Störungen (z.B. Polyneuropathie)
• Schwangerschaft und Stillzeit

Mangelsymptome
• Blutarmut,
• Schwäche, Müdigkeit
• vermindertes Zellwachstum
• Störungen des zentralen Nervensystems
• Konzentrationsprobleme
• Sensibilitätsstörungen wie Gereiztheit, Aggressivität

Zufuhrempfehlung und Einnahmehinweise

Zufuhrempfehlung
Die therapeutischen Dosen liegen aufgrund der grundsätzlich schweren Resorbierbarkeit von Vitamin B12 je nach Aufnahmeform (oral, sublingual) zwischen 10 und 1.000 mcg.

Gegenanzeigen, Sicherheit
Bei oraler Ergänzung von Vitamin B12 sind keine Gegenanzeigen oder Nebenwirkungen bekannt. Eine Überdosierung von Vitamin B12 wurde bei oraler Ergänzung ebenfalls nicht beobachtet.

Einnahmehinweise
Vitamin B12-Suppelemente werden besonders in Kombination mit Folsäure empfohlen.

Literaturquellen

1. Areekul S, Pattanamatum S, et al.: The source and content of vitamin B12 in the tempehs. J Med Assoc Thai 1990 Mar 73(3):152-156 1990.
2. Carmel R.: Cobalamin, the stomach, and aging. Am J Clin Nutr 1997 Oct 66(4):750-759 1997.
3. Cravo ML, Camilo ME. Hyperhomocysteinemia in chronic alcoholism: relations to folic acid and vitamins B(6) and B(12) status. Nutrition 2000;16:296–302
4. Clementz GL, Schade SG. The spectrum of vitamin B12 deficiency. Am Fam Physician, 1990 Jan 41(1):150-162 1990.
5. Crosby WH.: Oral cyanocobalamin without intrinsic factor for pernicious anemia. Arch Intern Med 1980;140:1582.
6. Davis, RE.: Clinical chemistry of vitamin B12. Adv Clin Chem 1984 24:163-216.
7. Delpre G, Stark P, and Niv Y.: Sublingual therapy for cobalamin deficiency as an alternative to oral and parenteral cobalamin supplementation. Lancet 1999 Aug 28 354(9180):740-741 1999.
8. Delpre G, Stark P, Niv Y.: Sublingual therapy for cobalamin deficiency as an alternative to oral and parenteral cobalamin supplementation. Lancet 1999;354:740–1.
9. Eussen SJ, de Groot LC, Clarke R, et al. Oral cyanocobalamin supplementation in older people with vitamin B12 deficiency: a dose-finding trial. Arch Intern Med 2005;165:1167–72.
10. Fong TL, Dooley CP, Dehesa M, et al. : Helicobacter pylori infection in pernicious anemia: a prospective controlled study. Gastroenterology 1991;100:328–32.
11. Goldberg TH.: Oral vitamin B12 supplementation for elderly patients with B12 deficiency. J Am Geriatr Soc 1995;43:SA73
12. Herbert V, Jacob E, Wong K-T, et al.: Destruction of vitamin B12 by vitamin C (letter). Am J Clin Nutr 30:297.
13. Hovding G.: Anaphylactic reaction after injection of vitamin B12. Br Med J 1968;3:102.
14. Houston DK, Johnson MA, Nozza RJ, et al.: Age-related hearing loss, vitamin B-12, and folate in elderly women. Am J Clin Nutr 1999;69:564–71.
15. Kumar S.: Vitamin B12 deficiency presenting with an acute reversible extrapyramidal syndrome. Neurol India 2004; 52: 507–9.
16. Kaufman W.: The use of vitamin therapy to reverse certain concomitants of aging. J Am Geriatr Soc 1955;3:927–36.
17. Kaptan K, Beyan C, Ural AU, et al. : Helicobacter pylori—is it a novel causative agent in Vitamin B12 deficiency? Arch Intern Med 2000;160:1349–53.
18. Kanazawa S, Herbert V.: Total corrinoid, cobalamin (vitamin B12), and cobalamin analogue levels may be normal in serum despite cobalamin in liver depletion in patients with alcoholism. Lab Invest 1985;53:108–10.
19. Kondo H.: Haematological effects of oral cobalamin preparations on patients with megaloblastic anemia. Acta Haematol 1998;99:200–5.
20. Lederle FA.: Oral cobalamin for pernicious anemia—medicine’s best kept secret? JAMA 1991;265:94–5
21. Lindenbaum J, Rosenberg IH, Wilson PWF, et al.: Prevalence of cobalamin deficiency in the Framingham elderly population. Am J Clin Nutr 1994;60:2–11.
22. Lovblad K, Ramelli G, et al. Retardation of myelination due to dietary vitamin B12 deficiency: cranial MRI findings. Pediatr Radiol 1997 Feb 27(2):155-158 1997.
23. Machlin LJ and Langseth L.: 1988. Vitamin-vitamin interactions. In: Bodwell CE and Erdman JW (Eds). Nutrient interactions. Marcel Dekker, New York, p297.
24. Mastronardi FG, Min W, Wang H, et al.: Attenuation of experimental autoimmune encephalomyelitis and nonimmune demyelination by IFN-ß plus vitamin B12: treatment to modify notch-1/sonic hedgehog balance. J Immunol 2004; 172: 6418–26.
25. Mori K, Ando I, Kukita A.: Generalized hyperpigmentation of the skin due to vitamin B12 deficiency. J Dermatol 2001; 28: 282–5.
26. Masalha R, Rudoy I, Volkov I, Yusuf N, Wirguin I, Herishana YO.: Symptomatic dietary vitamin B12 deficiency in a nonvegetarian population. Am J Med 2002; 112: 413–6.
27. Remacha AF, Cadafalch J.: Cobalamin deficiency in patients infected with the human immunodeficiency virus. Semin Hematol 1999;36:75–87.
28. Lindenbaum J, Healton EB, Savage DG, et al.: Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. N Engl J Med 1988;318:1720–8.
29. Pardo J, Peled Y, Bar J, et al.: Evaluation of low serum vitamin B(12) in the non-anaemic pregnant patient. Hum Reprod 2000;15:224–6.
30. Penninx BW, Guralnik JM, Ferrucci L, et al.: Vitamin B(12) deficiency and depression in physically disabled older women: epidemiologic evidence from the Women’s Health and Aging Study. Am J Psychiatry 2000;157:715–21.
31. Plaut GW, Smith CM, Alworth WL.: Biosynthesis of water-soluble vitamins. Ann Rev Biochem 1974 43:899-922 1974.
32. Perez-Perez GI.: Role of Helicobacter pylori infection in the development of pernicious anemia. Clin Infect Dis 1997;25:1020–2.
33. Rauma AL, Torronsen R, Hanninen O, Mykkanen H.: Vitamin B12 status of long term adherents of a strict uncooked vegan diet (“living food diet”) is compromised. J Nutr 1995;125:2511–5.
34. Rana S, D’Amico F, Merenstein JH.: Relationship of vitamin B12 deficiency with in older people. J Am Geriatr Soc 1998;46:931
35. Sauer SW, Keim ME.: Hydroxocobalamin: improved public health readiness for cyanide disasters. Ann Emerg Med 2001;37:635–41.
36. Stanger O, Herrmann W, Pietrzik K, et al.: DACH-LIGA homocystein (German, Austrian and Swiss Homocysteine Society): consensus paper on the rational clinical use of homocysteine, folic acid and B-vitamins in cardiovascular and thrombotic diseases: guidelines and recommendations. Clin Chem Lab Med 2003; 41: 1392–403.
37. Spalla C, Grein A, et al.: Microbial production of vitamin B12. 1997, Chapter 15 in: Bickel H and Schultz Y (Eds), Digestion and absorption of nutrients, Int J Vit and Nutr Res, Sup 25, Hans Huber Pub, Bern, pp257-284 1997.
38. Snow CF.: Laboratory diagnosis of vitamin B12 and folate deficiency. A guide for the primary care physician. Arch Intern Med 1999;159:1289–98 [review].
39. Sutterlin MW, Bussen SS, Rieger L et al.: Serum folate and Vitamin B12 levels in women using modern oral contraceptives (OC) containing 20 microg ethinyl estradiol. Eur J Obstet Gynecol Reprod Biol 2003 Mar 26;107(1):57-61 2003.
40. Solomon LR.: Cobalamin-responsive disorders in the ambulatory care setting: unreliability of cobalamin, methylmalonic acid, and homocysteine testing. Blood 2005; 105: 978–85.
41. Snowden JA, Chan-Lam D, Thomas SE, Ng JP.: Oral or parenteral therapy for vitamin B12 deficiency. Lancet 1999;353:411
42. Shemesh Z, Attias J, Ornan M, et al. : Vitamin B12 deficiency in patients with chronic-tinnitus and noise-induced hearing loss. Am J Otolaryngol 1993;14:94–9.
43. Sklar R.: Nutritional vitamin B12 deficiency in a breast-fed infant of a vegan-diet mother. Clinical Pediatrics (Phila) 1986; 25: 219–21.
44. Takenaka S, Sugiyama S, Ebara S, et al.: Feeding dried purple laver (nori) to vitamin B12-deficient rats significantly improves vitamin B12 status. Br J Nutr 2001;85:699–703.
45. Waif SO, Jansen CJ, Crabtree RE, et al.: Oral vitamin B12 without intrinsic factor in the treatment of pernicious anemia. Ann Intern Med 1963;58:810–7.
46. Verhaeverbeke I, Mets T, Mulkens K, Vandewoulde M.: Normalization of low vitamin B12 serum levels in older people by oral treatment. J Am Geriatr Soc 1997;45:124–5
47. Volkov I, Rudoy I, Abu-Rabia U, Masalha T, Masalha R.: Recurrent aphthous stomatitis responsive to vitamin B12 treatment. Can Fam Physician 2005; 51: 844–5.
48. Wu K, Helzlsouer KJ, Comstock GW, et al.: A prospective study on folate, B12, and pyridoxal 5’-phosphate (B6) and breast cancer. Cancer Epidemiol Biomarkers Prev 1999;8:209–17.

 

Weitere Quellen:
Wikipedia-Eintrag zu Vitamin B12

Cobalamin – Artikel auf Vitaminwiki.net

 

 

Vitamin B-Komplex

In Schale und Keim von Getreideprodukten sitzen die meisten B-Vitamine. Die Mehrheit der älteren Menschen nimmt jedoch mit der Nahrung zu wenige B-Vitamine auf.

Beschreibung

Der Vitamin B-Komplex besteht aus acht wasserlöslichen Vitaminen. Diese erfüllen vielfältige Aufgaben in verschiedenen Körpersystemen und Geweben. Gemeinsamkeiten: Alle B-Vitamine spielen eine unentbehrliche Rolle als Coenzyme bei der Verstoffwechslung von Kohlenhydraten, Fetten und Eiweiß. Gemeinsam steuern B-Vitamine zudem das Nervensystem, das ohne deren Zutun nicht funktionsfähig wäre. B-Vitamine werden daher auch als „Nervenvitamine“ (Neurotrope Vitamine; neuro = nerv, trop = ernährend) bezeichnet. Auch wichtig sind sie für die Aufrechterhaltung des Muskeltonus im Magen-Darm-Trakt und die Förderung der Gesundheit von Haut und Haaren. Sie dienen der Immunabwehr und der Entwicklung der Körperzellen.
Obwohl die einzelnen B-Vitamine deutlich unterschiedliche Verbindungen darstellen, sind ihre Stoffwechselwege eng miteinander verzahnt und voneinander abhängig. Da die Funktion eines B-Vitamins häufig andere B-Vitamine als Helfer benötigt, kommt ein isolierter B-Vitaminmangel selten vor. Die Anzeichen eines B-Vitaminmangels sind häufig uncharakteristisch und unspezifisch. Für einwandfreie Stoffwechselprozesse ist die regelmäßige, reichliche Zufuhr aller acht B-Vitamine essentiell.

Der Vitamin B-Komplex besteht aus

Thiamin = Vitamin B1
Riboflavin = Vitamin B2
Niacin/Nicotinamid = Vitamin B3
Pantothensäure = Vitamin B5
Pyridoxin = Vitamin B6
Biotin = Vitamin B7
Folsäure = Vitamin B9
Cobalamin = Vitamin B12

Funktionen und Anwendungsbereiche

Funktionen

Vitamin B1 (Thiamin)
Vitamin B1, oder Thiamin, dient als Katalysator bei der Energiegewinnung aus Kohlenhydraten. Es hilft zudem bei der Synthese von Nervenbotenstoffen (Neurotransmittern) sowie bei der Weiterleitung von Nervenimpulsen an Gehirn und Nervenzellen.
Thiaminmangel führt zu
• Konzentrationsschwächen
• emotionale Labilität
• Muskelschwund
• Kribbeln in Armen und Beinen, Fußbrennen
Der übliche präventive Dosierungsbereich für Thiamin liegt zwischen 10 und 50 mg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Vitamin B2 (Riboflavin)
Riboflavin dient der Energieproduktion der Zelle. Es ist aber auch als Antioxidans sowie für intakte Haut und Schleimhäute zuständig. Das Vitamin ist wichtig für Haut, Nägel, Augen, Mund, Lippen und Zunge. Ein Riboflavinmangel äußert sich in Antriebslosigkeit, eingerissenen Mundwinkeln, lichtempfindlichen Augen, Hautrötung und Hautschuppung.
Der übliche präventive Dosierungsbereich für Riboflavin liegt zwischen 10 und 100 mg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Vitamin B3 (Niacin/Nicotinamid)

Niacin, oder Vitamin B3, reguliert die Energiegewinnung und den Auf- und Abbau von Fetten, Kohlenhydraten und Proteinen. Es vermag eine Senkung der Cholesterinwerte und dient zur Vorbeugung und Behandlung von Arteriosklerose. Niacin-Mangel führt zu Pellagra, eine Krankheit mit Symptomen wie Depression, Schlafstörungen, Sonnenbrand, Durchfall, Reizbarkeit, geschwollene Zunge und geistige Verwirrung.
Der übliche präventive Dosierungsbereich für Niacin liegt zwischen 15 und 100 mg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Vitamin B5 (Pantothensäure)

Pantothensäure oder auch “Anti-Stress-Vitamin” genannt, ist im Energiestoffwechsel sowie in der Bildung von Hormonen, Vitamin D und Neurotransmittern beteiligt. Akuter Mangel führt zu Müdigkeit, Übelkeit und Magen-Darm-Störungen.
Der übliche präventive Dosierungsbereich für Pantothensäure liegt zwischen 10 und 100 mg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Vitamin B6 (Pyridoxin)

Vitamin B6, oder Pyridoxin, hilft dabei, Aminosäuren auf- und abzubauen, es ist wichtig für die Bildung roter Blutkörperchen, zur Homocystein-Entgiftung und für ein funktionierendes Nerven- und Immunsystem. Mängel führen zu Hauterkrankungen, Schwindel, Übelkeit, Blutarmut (Anämie), Krämpfe, Muskelabbau und häufig Nierensteine. Der übliche präventive Dosierungsbereich für Vitamin B6 liegt zwischen 10 und 25 mg.
Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Biotin

Biotin, auch bekannt als „Vitamin H“ (Haut und Haar), hilft bei der Freisetzung von Energie aus Kohlenhydraten und Fetten und dem Stoffwechsel der Fettsäuren. Es fördert den Schwefeleinbau in Haare und Nägel. Der übliche präventive Dosierungsbereich für Biotin liegt zwischen 50 und 2.000 mcg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.

Folsäure (Vitamin B9)
Folsäure ermöglicht dem Körper die Bildung von Hämoglobin zur Blutbildung. Folsäure ist in Wachstumsphasen sowie in und bereits VOR einer Schwangerschaft besonders wichtig. Folsäuremangel verursacht beim wachsenden Embryo Fehlbildungen, den so genannten Neuralrohrdefekt. Frauen, die schwanger sind oder planen, schwanger zu werden, sollten 600 mcg pro Tag ergänzen.
Der übliche präventive Dosierungsbereich für Folsäure liegt zwischen 400 und 800 mcg.

Vitamin B12 (Cobalamin)
Vitamin B12, auch bekannt als Cobalamin, fördert die Funktionen des Nervensystems und die Bildung von roten Blutkörperchen. Ist der Körper nicht in der Lage, ausreichend Vitamin B12 aufzunehmen, kann das zu einer bestimmte Form der Anämie (Blutarmut) führen. Bioverfügbares B12 gibt es nur in tierischen Quellen, wie Eier, Milch, Fisch, Fleisch und Leber. Vegetariern wird daher eine Cobalamin-Ergänzung sehr empfohlen.
Der übliche präventive Dosierungsbereich für Vitamin B12 liegt zwischen 10 und 600 mcg. Nach therapeutischer Empfehlung sind höhere Dosen möglich.


Erhöhter Bedarf und Mangel

Nach den für Deutschland, Österreich und die Schweiz vorliegenden Daten über die Versorgungssituation mit Vitaminen des B-Komplexes ist die Zufuhr sowohl für Frauen als auch für Männer in fast allen Altergruppen nicht optimal.
Quelle: Bundesinstitut für Risikobewertung: Domke A., Großklaus R., Niemann B., Przyrembel H., Richter K., Schmidt E., Weißenborn A., Wörner B., Ziegenhagen R. (Hrsg.) Verwendung von Vitaminen in Lebensmitteln – Toxikologische und ernährungsphysiologische Aspekte Teil 1. 119-151, 169-184 BfR-Hausdruckerei Dahlem, 2004

Häufigste Ursachen für erhöhten Bedarf
• unzureichende Zufuhr durch einseitige Ernährung, wenig Vollkorn-, viel Weißmehlprodukte
• hohe Stressbelastung, Leistungssport
• hoher Konsum an Kaffee, Alkohol oder Zigaretten
• Alter
• Schwangere und Stillende
• strenge Vegetarier
• Medikamenteneinnahme
• Einnahme oraler Kontrazeptiva („Pille“)
• Chronische Erkrankungen: Diabetes mellitus, Herz-Kreislauf-Erkrankungen, Krebs, Nieren- und Lebererkrankungen

Mangelsymptome
• Nervensystem: Konzentrationsschwäche, Rückgang der geistigen Leistungsfähigkeit, Antriebslosigkeit, Müdigkeit, Reizbarkeit, Depressionen, Appetitlosigkeit, Schlafstörungen, Kribbeln in Armen und Beinen, Fußbrennen, Entzündungen der Nerven, Taubheitsgefühl, Nervenschmerzen, neurologische Störungen
• Haut und Schleimhäute: Entzündung der Haut (Dermatitis), Wundheilungsstörungen, Bindehautentzündung, Magen-Darm-Störungen, rissige Mundwinkel
• Haare und Nägel: Haarausfall, brüchige Nägel
• Stoffwechsel und Immunsystem: Fettstoffwechselstörungen, erhöhte Homocysteinwerte, Blutarmut, Infektanfälligkeit, Immunschwäche, Muskelabbau


Literaturquellen

1. Bundesinstitut für Risikobewertung: Domke A., Großklaus R., Niemann B., Przyrembel H., Richter K., Schmidt E., Weißenborn A., Wörner B., Ziegenhagen R. (Hrsg.): Verwendung von Vitaminen in Lebensmitteln – Toxikologische und ernährungsphysiologische Aspekte Teil 1. 119-151, 169-184
BfR-Hausdruckerei Dahlem, 2004
1. Chen, M. et al. Plasma and erythrocyte thiamin concentration in geriatric out patients, Journal of the American College of Nutrition 15:231-236, 1903.
2. Cook, C., and Thomson, A. B-complex vitamins in the prophylaxis and treatment of Wernicke-Korsakoff Syndrome, British Journal of Clinical Practice 57(9):401-465, 1997.
3. Gold, M., et al, Plasma and Red Blood Cell Thiamine Deficiency in Patients with Dementia of the Alzheimer’s Type, Archives of Neurology 52:1081-1085, 1995.
4. Maebashi, M., et al. Therapeutic evaluation of the effect of biotin on hyperglycemia in patients with non-insulin diabetes mellitus, Journal of Clinical Biochemist and Nutrition 14:211-218, 1993.
5. Madigan, S., et al. Riboflavin and vitamin B6 intakes and status and biochemical response to riboflavin supplementation in free-living elderly people, American Journal of Clinical Nutrition 66:389-395, 1998.
6. Schoenen, J., et al. Effectiveness of High-Dose Riboflavin in Migraine Prophylaxis, Neurology 50:466-470, 1998.
7. Berge, K. et al. Coronary drug project: experience with niacin, European Journal of Clinical Pharmacology 40:40-51, 1991.
8. Berkson, B., M.D., Ph.D. All About the B Vitamins. Garden City Park, NY: Avery Publishing Group, 1998.
9. Berkson, B. The Alpha-Lipoic Acid Breahthrough. Rocklin, CA: Prima Publishing 1999.
Bundesinstitut für Risikobewertung: Domke A., Großklaus R., Niemann B., Przyrembel H., Richter K., Schmidt E., Weißenborn A., Wörner B., Ziegenhagen R. (Hrsg.)
Verwendung von Vitaminen in Lebensmitteln – Toxikologische und ernährungsphysiologische Aspekte Teil 1. 119-151, 169-184
BfR-Hausdruckerei Dahlem, 2004

 

Weiterführende Quellen:
Wikipedia-Eintrag zu B-Vitaminen

Vitamin-B-Komplex auf Vitaminwiki.net

 

Kelp

Kelp (Laminariales): Die Salzwasser-Braunalge ist eine reiche natürliche Quelle von natürlichem Jod

Beschreibung

Kelp ist eine Braunalge der Familie Laminariales und vor allem wegen seines natürlich hohen Gehalts des Spurenelements Jod von besonderer Bedeutung.
Kelp wächst in unter Wasser liegenden so genannten „Kelpwäldern“ nährstoffreicher Meeresgewässer, vor allem an den Küsten des Atlantiks und Pazifiks. Da die in Kelp enthaltenen Mikronährstoffe in natürlicher Form und natürlichem Verbund enthalten sind, können sie besodners effizient vom Körper resorbiert, also aufgenommen, werden. Durch die gute Jodversorgung kann Kelp die Schilddrüse anregen und bei einer Unterfunktion der Schilddrüse die Jodversorgung verbessern.

Anwendungsbereich und Wirkung


Deckung des Jodbedarfs

Deutschland zählt wie der gesamte europäische Raum zu den Jodmangelgebieten. Der durch jodarme Böden und dadurch jodarme regionale Lebensmittel bedingte Jodmangel und daraus entstehende Erkrankungen (Hypothyreose, Kropf) gelten immer noch als ungelöstes Problem. Im deutschsprachigen Bereich werden durchschnittlich mit täglich 100 mcg lediglich die Hälfte der zur Deckung des Jodbedarfs notwendigen Zufuhr von 200 mcg aufgenommen – selbst bei einer Ernährungsweise, die als vielseitig und gesund gilt und jodiertes Salz mit einbezieht. Durch eine regelmäßige Jodergänzung mit der Alge Kelp lassen sich Jodmängel wie deren Folgeerkrankungen leicht vermeiden.

Jod ist für den Menschen ein lebensnotwendiges Spurenelement, das zur Bildung der Schilddrüsenhormone benötigt wird. Ein Jodmangel führt zwangsläufig zum Mangel dieser Hormone und in der Folge zu Störungen des Stoffwechsels, des Kreislaufs und der Fertilität (Fruchtbarkeit). In Wachstumsphasen sind die Hormone der Schilddrüse besonders essentiell für körperliche und geistige Entwicklungsprozesse.

Wirkstoffe

Neben Jod liefert die Alge Kelp Enzyme, Proteine, Mineralstoffe, Vitamine und zellaktive Substanzen:
• Mineralstoffe: Calcium, Kupfer, Selen, Eisen, Magnesium, Zink,
• Vitamine: A, C, E und K, B-Vitamine
• Vitaminoide/Aminosäuren: Cholin, Inositol und PABA
• Kohlenhydrat Algin (Natrium-Alginat)

Zufuhrempfehlung und Hinweise

Zufuhrempfehlung
Zur Vorbeugung eines Jodmangels wird Erwachsenen und Kindern über 12 Jahren täglich eine Ergänzung von 100 bis 150 mcg Jod empfohlen (Quelle: Kelp). Kelphaltige Präparate sollten dieser Jodmenge entsprechen.

Gegenanzeigen
Schwangere und stillenden Frauen sowie Personen mit Schilddrüsenerkrankungen wird die Einnahme nur nach ärztlicher Absprache empfohlen.


Literaturquellen

1. Blumenthal, Busse, Goldberg, et al.: The Complete German Commission E Monographs: Therapeutic Guide to Herbal Medicines. The American Botanical Council, Austin, TX; (1998).
2. Bruneton J.: Pharmacognosy, Phytochemistry, Medicinal Plants. 2nd ed. Paris: Lavoisier; (1999).
3. DerMarderosian A., Beutler J.: The Review of Natural Products. St. Louis, MO: Facts and Comparisons; (2002).
4. Davidson A.: The Oxford Companion to Food. New York: Oxford University Press; (1999).
5. Fetrow C., Avila J.: Professional’s Handbook of Complementary and Alternative
6. Jellin J., ed.: Natural Medicines Comprehensive Database. Stockton, CA: Therapeutic Research Faculty; (2002).
7. Jurkovic N., Kolb N. Colic I.: Nutritive value of marine algae Laminaria japonica and Undaria pinnatifida. Di Nahrung 1:63-66. (1995).
8. Milliken W., Bridgewater S.: Scottish Executive Central Research Unit Web site. Flora Celtica: Sustainable Development of Scottish Plants. (2001).
9. McHugh D.: Food and Agriculture Organization of the United Nations Web site. A guide to the seaweed industry. 2003. Accessed October 3, (2005).
10. Partos L. ISP closes ingredients plant on rising costs. (2005).
11. Walkin O., Douglas D.: Health food supplements prepared from kelp- a source of elevated urinary arsenic. Clin Toxicol 8:325-31. (1975).
12. Tyler V., Foster S.: Tyler’s Honest Herbal. 4th ed. Binghamton, NY: Haworth Herbal Press; (1999).
13. Vaughan J., Judd P.: The Oxford Book of Health Foods. Oxford: Oxford University Press; (2003).
14. Wood R. The New Whole Foods Encyclopedia. New York. Penguin Books. (1999).
15. Yuan C., Bieber E., eds. Textbook of Complementary and Alternative Medicine. New York: The Parthenon Publishing Group; (2003).

 

Weiterführende Quellen:

Wikipedia-Eintrag zu Kelpwald

Kelp-Artikel auf Vitaminwiki.net