Chrom

Das Spurenelement Chrom ist entscheidend für die Verbesserung der Insulinverwertung (Glucosetoleranz) der Zellen

Beschreibung

Chrom ist eines von sieben Spurenelementen mit essentieller Bedeutung für den Menschen. Chrom reguliert als so genannter Glucose-Toleranz-Faktor (GTF) den Kohlenhydrat-, Fett- und Eiweißstoffwechsel. Bei genügender Chromaufnahme benötigt der Organismus weniger Insulin (Hormon für die Glukoseaufnahme in die Zellen). Durch eine gesteigerte Fettabbaurate werden gleichzeitig die Blut-Cholesterin- und Triglyceridwerte verbessert. In der komplementären (ergänzenden) Therapie von Diabetikern nimmt Chrom eine Schlüsselrolle ein. Die Symptome von Diabetes mellitus werden durch einen Mangel an Chrom verstärkt.

Funktionen und Anwendungsbereiche

Funktionen
• Verbesserung der Insulinverwertung (Glucosetoleranz)
• Verbesserter Fettstoffwechsel
• Proteinstoffwechsel
• Zellteilung
• Immunfunktion

Verbesserung der Insulinverwertung (Glucosetoleranz)

Die wichtigste Funktion von Chrom besteht in der Interaktivität als Glukose-Toleranz-Faktor (GTF). GTF verstärkt die Insulinwirkung indem es die Zell-Rezeptoren sensibler auf das Hormon Insulin ansprechen lässt. Chrom ist somit in der Lage, die Glukose-(Zucker-)Belastbarkeit des menschlichen Organismus zu verbessern. Die Aufnahme von Glucose in Leber-, Muskel- und Fettzellen wird beschleunigt und damit die im Blut zirkulierende Glukosemenge vermindert.

Verbesserter Fettstoffwechsel

Durch die gesteigerte Insulinsensibilität der Zellen beeinflusst Chrom auch das Lipidprofil von Triglyceriden, LDL-, HDL- und Gesamtcholesterin (Blutfettwerte) bedeutend. Chrom senkt das Gesamtcholesterin und verbessert das Verhältnis zwischen HDL- und LDL-Cholesterin. Chrom hat damit entscheidenden Einfluss in der Prävention von arteriosklerotischen Plaques in den Gefäßwänden.

Proteinstoffwechsel

Chrom wird für den Einbau der Aminosäuren Glycin, Serin, Methionin und Alpha-Aminobuttersäure in die Herz- und Skelettmuskulatur benötigt.

Zellteilung

Chrom ist in der RNA (Ribonukleinsäure, Ribonucleic acid) im Zellkern, der wichtigen Substanz für die Umsetzung der Erbinformation, in entscheidenden Mengen enthalten und gewährleistet die ausreichende RNA-Synthese.

Immunfunktion
Verschiedene immun-relevante Prozesse wie zum Beispiel die Steuerung der Hormone Interferon und Interleukin, die für die Aktivierung der weißen Blutkörperchen (T-Lymphozyten) verantwortlich sind, werden von Chrom aktiviert.

Anwendungsbereiche
• Diabetes mellitus
• Regulierung des Cholesterin- und Lipid-Stoffwechsels
• Leistungssport

Diabetes mellitus

Chrom erhöht die Insulinsensibilität der Zellen und hilft damit, den Glukosespiegel im Blut zu senken und Diabetikern die Kontrolle des Blutzuckerspiegels zu erleichtern. In zahlreichen Studien konnten durch die tägliche Ergänzung von 200 µg Chrom die Blutzuckerwerte und die Glukosetoleranz deutlich verbessert und die Insulinresistenz der Zellen verringert werden. Infolge eines häufig vorliegenden Chrommangels (zu geringe Aufnahme mit Nahrungsmitteln!) fehlt Diabetikern die Möglichkeit, den GTF zu bilden. Eine Ergänzung mit Chrom ist dann besonders wichtig. Auch bei gestörter Glukosetoleranz als Vorstufe eines Diabetes mellitus wird durch Chrom-Supplementierung die Glukoseaufnahme der insulinabhängigen Zellen sowie die Glukosetoleranz gesteigert.

Regulierung des Cholesterin- und Lipid-Stoffwechsels
Menschen mit erhöhten Cholesterin-Werten sollten besonders auf eine ausreichende Versorgung mit Chrom achten. Chrom kann unterstützend die Serum-Cholesterinspiegel senken und das HDL-Cholesterin erhöhen. Bei erhöhtem Gesamtcholesterin und erniedrigten HDL-Werten wird eine Chromergänzung von 200 bis 500 µg pro Tag empfohlen.

Leistungssport

Bei körperlichem Training steigt der Glukoseverbrauch an, wodurch sich die Chromausschneidung über die Nieren vervielfacht. Zugleich ist Chrom für das Muskelwachstum wichtig, da es den Transport von Aminosäuren in die Muskelzellen erleichtert.


Erhöhter Bedarf und Mangel


Häufigste Ursachen für erhöhten Bedarf
Risikofaktoren für Chrommangel sind:

• Alter: Mit dem Alterungsprozess nimmt die Chromkonzentration in den Geweben ab und das aufgenommene Chrom kann schlechter verwertet und in geringerem Maße für den Aufbau des Glukose-Toleranz-Faktors (GTF) verwertet werden, d.h. mehr Chrom ist erforderlich um den Bedarf zu decken.
• Stress, Sport: Stress aber auch hohe sportliche Aktivität führen zu einer vielfach höheren Chromausscheidung über den Urin.
• Hoher Konsum von raffinierten Kohlenhydraten (Weißmehlprodukten): Ein hoher Verzehr einfacher Kohlenhydrate steigert die Chromausscheidung.
• Schwangere: Schwangere gehören zur Risikogruppe für Chrommangel, da der Embryo einen großen Anteil der Chromreserven „verbraucht“. Chrommangel kann daher den so genannten Schwangerschaftsdiabetes (Gestationsdiabetes) auslösen.
• Medikamenteneinnahme
• Diabetes mellitus

Mangelsymptome
Bei starkem Chrommangel kommt es zu erhöhten Blut-Glukose- und Insulinwerten bis zu einem Krankheitsbild, das dem eines Diabetes mellitus entspricht.

• Störungen der Glukosetoleranz: Bei starkem Chrommangel kommt es zu erhöhten Blut-Glukose- und Insulinwerten bis zu einem Krankheitsbild, das dem eines Diabetes mellitus entspricht.
• Hyperglykämie
• erhöhte Cholesterin- und Triglyceridwerte im Blut
• Nervenstörungen (Neuropathien)
• plötzlicher Gewichtsverlust (unentdeckter Diabetes mellitus)


Zufuhrempfehlung und Einnahmehinweise

Zufuhrempfehlung
Zur allgemeinen Prävention werden täglich 150 bis 200 µg Chrom empfohlen.

Gegenanzeigen/Sicherheit

• In normalen Dosiermengen sind keine Nebenwirkungen bekannt. Chromgaben von 1000 µg täglich über mehrere Monate lang, führten bei Diabetikern zu guten therapeutischen Erfolgen ohne Nebenwirkungen.
• Bei behandlungsbedürftigen Erkrankungen, der Einnahme von Medikamenten und in der Schwangerschaft und Stillzeit ist zudem mit dem behandelnden Arzt Rücksprache zu halten.

Einnahmehinweis
• Organisches Chrom: Bei Chrom ist die Aufnahmeform ausschlaggebend für seine Wirksamkeit. Organisches Chrom, wie Picolinat, wird vielfach besser resorbiert als anorganische Chrom-Formen.
• Vitamin C: Die Chromverwertung kann bei gleichzeitiger Gabe von Vitamin C deutlich verbessert werden.


Literaturquellen

1. Abraham AS, Brooks BA, Eylath U.: The effects of chromium supplementation on serum glucose and lipids in patients with and without non-insulin-dependent diabetes. Metabolism 1992;41:768-71.
2. Anderson RA, Polansky MM, Bryden NA, Roginski EE, Mertz W, Glinsmann W.: Chromium supplementation of human subjects: effects on glucose, insulin, and lipid variables. Metabolism 1983;32:894-9.
3. Althuis MD, Jordan NE, Ludington EA, Wittes JT.: Glucose and insulin responses to dietary chromium supplements: a meta-analysis. Am J Clin Nutr 2002;76:148-55.
4. Anderson RA, Cheng N, Bryden NA, Polansky MM, Chi J, Feng J: Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 46:1786–1791, 1997
5. Anderson RA, Bryden NA, Polansky MM.: Dietary chromium intake: freely chosen diets, institutional diets and individual foods. Biol Trace Elem Res 1992;32:117-21.
6. Anderson RA, Bryden NA, Patterson KY, Veillon C, Andon MB, Moser-Veillon PB. : Breast milk chromium and its association with chromium intake, chromium excretion, and serum chromium. Am J Clin Nutr 1993;57:419-23.
7. Anderson RA, Polansky MM, Bryden NA et al: Effects of supplemental chromium on patients with symptoms of reactive hypoglycemia. Metabolism 1987: 36:351-355. Anderson R, Polansky M, Bryden N., Patterson K, Veillon C, Glinsmann W.: Effects of chromium supplementation on urinary Cr excretion of human subjects and correlation of Cr excretion with selected clinical parameters. J Nutr 1983 276-81.
8. Balk E., Tatsioni A., Lichtenstein A., Lau J., Pittas A.: Effect of chromium supplementation on glucose metabolism and lipids: a systematic review of randomized controlled trials. Diabetes Care 30:2154–2163, 2007
9. Bunker V., Lawson M., Delves H., Clayton B.: The uptake and excretion of chromium by the elderly. Am J Clin Nutr 1984;39:797-802.
10. Brown RO, Forloines-Lynn S, Cross RE, Heizer WD.: Chromium deficiency after long-term total parenteral nutrition. Dig Dis Sci 1986;31:661-4.
11. Cabrera-Vique C, Teissedre P-L, Cabanis M-T, Cabinis J-C. : Determination and levels of chromium in French wine and grapes by graphite furnace atomic absorption spectrometry. J Agric Food Chem 1997;45:1808-11.
12. Cocho JA, Cervilla JR, Rey-Goldar ML, Fdez-Lorenzo JR, Fraga JM.: Chromium content in human milk, cow’s milk, and infant formulas. Biol Trace Elem Res 1992;32:105-7.
13. Cefalu WT, Hu FB.: Role of chromium in human health and in diabetes. Diabetes Care 2004;27:2741-51.
14. Dattilo AM, Miguel SG.: Chromium in health and disease. Nutr Today 2003;38:121-33.
15. Anderson RA, Kolovsky AS.: Chromium intake, absorption and excretion of subjects consuming self-selected diets. Am J Clin Nutr 1985;41:1177-83.
16. Davies S, Howard JM, Hunnisett A, Howard M.: Age-related decreases in chromium levels in 51,665 hair, sweat, and serum samples from 40,872 patients — implications for the prevention of cardiovascular disease and type II diabetes mellitus. Metabolism 1997;46:469-73.
17. Davis ML, Seaborn CD, Stoecker BJ.: Effects of over-the-counter drugs on 51chromium retention and urinary excretion in rats. Nutr Res 1995;15:201-10.
18. Doisy RJ, Streeten DHP, Souma ML, Kalafer ME, Rekant SL, Dalakos TG.: Metabolism of 51chromium in human subjects. In: Newer Trace Elements in Nutrition (edited by Mertz W, Cornatzer WE). Dekker, New York, 1971, pp. 155-68.
19. Doisy RJ, Streeten DHP, Freiberg JM, Schneider AJ.: Chromium metabolism in man and biochemical effects. In: Trace Elements in Human Health and Disease, Volume 2: Essential and Toxic Elements (edited by Prasad A, Oberleas D). Academic Press, New York, 1976, pp. 79-104.
20. Freund H, Atamian S, Fischer JE.: Chromium deficiency during total parenteral nutrition. JAMA 1979;241:496-8.
21. Hopkins Jr. LL, Ransome-Kuti O, Majaj AS.: Improvement of impaired carbohydrate metabolism by chromium(III) in malnourished infants. Am J Clin Nutr 1968;21:203-11.
22. Hermann J, Arquitt A. Effect of chromium supplementation on plasma lipids, apolipoproteins, and glucose in elderly subjects. Nutr Res 1994;14: 671-4.
23. Jeejeebhoy KN, Chu RC, Marliss EB, Greenberg GR, Bruce-Robertson A.: Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation in a patient receiving long-term total parenteral nutrition. Am J Clin Nutr 1977;30:531-8.
24. Kozlovsky AS, Moser PB, Reiser S, Anderson RA.: Effects of diets high in simple sugars on urinary chromium losses. Metabolism 1986;35:515-8.
25. Kozlovsky AS, Moser PB, Reiser S et al: Effects of diets high in simple sugars on urinary chromium losses. Metabolism 1986; 35:515-518.
26. Kaats GR, Blum K, Pullin D et al: A randomized double-masked, placebo-controlled study of the effects of chromium picolinate supplementation on body composition.: a replication and extension of a previous study. Curr Ther Res 1998; 59:379-388.
Krzanowski, J.J. (1996). Chromium picolinate. Journal of the Florida Medical
Association, 83(1), 29-31.
27. Lindemann, M. D., Wood, C. M., Harper, A. F., Komegay, E. T. & Anderson, R.:
(1995). Dietary chromium picolinate additions improve gain-feed and carcass characteristics in growing finishing pigs and increase litter in reproducing sows. Journalof Animal Science, 2, 457-465.
28. Lukaski, H.C., Bolonchuk, W.W., Siders, W.A., & Milne, D.B.: (1996). Chromium
supplementation and resistence training: effects on body composition, strength,
and trace element status of men.American Journal of Clinical Nutrition, 63, 954-
965.
29. Lukaski HC, Bolonchuk WW, Siders WA, Milne DB.: Chromium supplementation and resistance training: effects on body composition, strength and trace element status of men. Am J Clin Nutr 1996;63:954-65.
30. Lukaski HC. Chromium as a supplement. Annu Rev Nutr 1999;19:279-302.
31. Lifschitz ML, Wallach S, Peabody RA, Verch RL, Agrawal R.: Radiochromium distribution in thyroid and parathyroid deficiency. Am J Clin Nutr 1980:33:57-62.
32. Mertz W: Chromium occurrence and function in biological systems. Physiol Rev 1969;49:163-239.
33. Mertz W.: Chromium in human nutrition: a review. J Nutr 1993;123:626-33.
34. Mertz W.: Interaction of chromium with insulin: a progress report. Nutr Rev 1998;56:174-7.
35. Mossop RT.: Effects of chromium III on fasting blood glucose, cholesterol and cholesterol HDL levels in diabetics. Cent Afr J Med 1983;29:80-2.
36. Offenbacher EG, Spencer H, Dowling HJ, Pi-Sunyer FX.: Metabolic chromium balances in men. Am J Clin Nutr 1986;44:77-82.
37. Offenbacher E.: Promotion of chromium absorption by ascorbic acid. Trace Elem Elect 1994;11:178-81.
38. Offenbacher EG, Rinko CJ, Pi-Sunyer FX.: The effects of inorganic chromium and brewer’s yeast on glucose tolerance, plasma lipids, and plasma chromium in elderly subjects. Am J Clin Nutr 1985;42:454-61.
39. Potter JF, Levin P, Anderson RA, Freiberg JM, Andres R, Elahi D.: Glucose metabolism in glucose-intolerant older people during chromium supplementation. Metabolism 1985;34:199-204.
40. Pittler MH, Stevinson C, Ernst E.: Chromium picolinate for reducing body weight: meta-analysis of randomized trials. Int J Obes Relat Metab Disord 2003;27:522-9.
41. Rabinowitz MB, Gonick HC, Levin SR, Davidson MB.: Effects of chromium and yeast supplements on carbohydrate and lipid metabolism in diabetic men. Diabetes Care 1983;6:319-27.
42. Riales R, Albrink MJ.: Effect of chromium chloride supplementation on glucose tolerance and serum lipids including high-density lipoprotein of adult men. Am J Clin Nutr 1981;34:2670-8.
43. Roeback Jr. JR, Hla KM, Chambless LE, Fletcher RH.: Effects of chromium supplementation on serum high-density lipoprotein cholesterol levels in men taking beta-blockers. A randomized, controlled trial. Ann Intern Med 1991;115:917-24.
44. Seaborn CD & Stoecker BJ: Effects of antacid or ascorbic acid on tissue accumulation and urinary excretion of 51chromium. Nutr Res 1990; 10:1401-1407.
45. Schroeder, H.A.: (1968). The role of chromium in mammilian nutrition.
American Journal of Clinical Nutrition, 21, 230-244.
46. Schwarz K, Mertz W. Chromium(III) and the glucose tolerance factor. Arch Biochem Biophys 1959;85:292-5.
47. Trent, L.K, & Theiding-Cancel, D.: (1995). Effects of chromium picolinate on body composition. Journal of Sports Medicine and Physical Fitness, 35(4), 273-280. Uusitupa MI, Kumpulainen JT, Voutilainen E, Hersio K, Sarlund H, Pyorala KP, Koivistoinen PE, Lehto JT.: Effect of inorganic chromium supplementation on glucose tolerance, insulin response, and serum lipids in noninsulin-dependent diabetics. Am J Clin Nutr 1983;38:404-10.
48. Uusitupa MI, Mykkanen L, Siitonen O, Laakso M, Sarlund H, Kolehmainen P, Rasanen T, Kumpulainen J, Pyorala K.: Chromium supplementation in impaired glucose tolerance of elderly: effects on blood glucose, plasma insulin, C-peptide and lipid levels. Br J Nutr 1992;68:209-16.
49. Vincent JB.: The potential value and toxicity of chromium picolinate as a nutritional supplement, weight loss agent and muscle development agent. Sports Med 2003;33:213-30.
50. Walker, L.S., Bemben, M.G., Bemben, D.A., Knehans, A.W.: (1998). Chromium
picolinate effects on body composition and muscular performance in
wrestlers. Medicine and Science in Sports and Exercise, 30(12), 1730-1737.

 

Weiterführende Quellen:

Wikipedia-Eintrag zu Chrom

Chrom-Artikel auf Vitaminwiki.net