Archiv der Kategorie: Morbus Alzheimer

Pantothensäure

Pantothensäure sorgt für Haut- und Schleimhauterneuerung, die Wundheilung und ermöglicht die Bildung von Haut- und Blutpigmenten

Beschreibung

Pantothensäure (früher Vitamin B5 genannt) gehört zum Vitamin B-Komplex und schon sein Name (griech. pantos: überall) weist auf sein Vorhandensein in jeder Körperzelle hin. In seiner aktiven Form, dem Coenzym A, ist Pantothensäure an mehr als 100 Stoffwechselvorgängen und speziell im Energiestoffwechsel der Zelle beteiligt. Neben der Energieproduktion ist das Vitamin für die Synthese von Neurotransmittern (Botenstoffe, die Reize zwischen den Nervenzellen übertragen), Aminosäuren, Proteinen, Hormonen, dem Blutfarbstoff Hämoglobin (rote Blutkörperchen), Gallensäuren und Vitaminen verantwortlich. Pantothensäure erneuert alte und geschädigte Zellen und sichert reibungslose Immun-, Reproduktions-, Stoffwechsel- und Wachstumsprozesse im Körper. Auch an der Einbindung von Fettsäuren in den Zellwänden ist Pantothensäure beteiligt. Zusätzlich hat Pantothensäure eine wichtige Funktion am Gewebeaufbau, speziell der Haut und Schleimhäute. Da es die Lipolyse (Fettfreisetzung aus den Adipozyten = Fettzellen) ankurbelt, unterstützt es die Verstoffwechslung von Depotfett und stellt gleichzeitig Energie für Stresssituationen zur Verfügung.

Funktionen und Anwendungsbereiche

Funktionen
• Energiestoffwechsel
• Lipolyse
• Synthese von Neurotransmittern
• Synthese von Steroidhormonen, Vitaminen, Hämoglobin, Taurin
• Haut- und Schleimhauterneuerung, Wundheilung
• Produktion von Haar-, Haut und Blutpigmenten
• Immunsystem

Anwendungsbereiche

• Genereller Vitamin B-Mangel
• Konzentrationsstörungen, Mangel an Neurotransmittern
• Aufbau straffer, gesunder Haut und Schleimhaut
• Entzündungshemmende Wirkung
• Anämie (Blutarmut),
• Gewichtsreduktion (Fettabbau)

Konzentrationsstörungen, Mangel an Neurotransmittern

Pantothensäure kann (besonders im Komplex mit weiteren B-Vitaminen) Konzentrations-, Lern- und Gedächtnisstörungen verringern. Pantothensäure ermöglicht die Synthese von Acetylcholin, einem der wichtigsten Neurotransmitter im Gehirn – beispielsweise vermittelt Acetylcholin die Reizübertragung zwischen Nerven und Muskeln sowie zwischen den Nervenzellen.

Aufbau straffer, gesunder Haut und Schleimhaut
Der Pantothensäure fällt eine wichtige Rolle am Gewebeaufbau speziell von Haut und Schleimhäuten zu. Pantothensäure ist bedeutsam für den Erhalt und die Regeneration von Zellen, weshalb das Vitamin auch bei der Heilung von großflächigen Wunden und Verbrennungen eine Rolle spielt. Zudem reguliert es, wie alle Vitamine des B-Komplexes, die Talgproduktion, stärkt das Gewebe und sorgt für eine gesunde Kopfhaut.

Entzündungshemmende Wirkung

Die anti-inflamatorischen (entzündungsvermindernden) Effekte von Pantothensäure liegen in ihrer Aufgabe in der Nebennierenrinde, wo sie bei der Bildung des Stresshormons Cortisol hilft. Dieses Hormon ermöglicht es dem Organismus, auf Stressbelastungen entsprechend zu reagieren und hemmt Entzündungsprozesse im Körper. Patienten mit Arhritis sowie mit chronischen Entzündungen weisen deutlich zu niedrige Pantothenwerte auf. Hochdosiert kann mit einer Pantothensäure-Ergänzung eine Schmerzlinderung bei chronischen Entzündungen erzielt werden.

Anämie (Blutarmut)
Pantothensäure ist wichtig für die Hämoglobinsynthese und hat einen positiven Einfluss bei verschiedenen Arten der Anämie.

Gewichtsreduktion (Fettabbau)
Pantothensäure ermöglicht als Coenzym A die Aktivierung der Lipolyse (Fettfreisetzung aus den Adipozyten = Fettzellen).


Erhöhter Bedarf und Mangel

Häufige Ursachen für erhöhten Bedarf
Risikogruppen für Pantothensäure-Mangel sind
• Senioren: Senioren haben generell ein stark erhöhtes Risiko für Vitamin B-Mangel!
• Alkoholiker
• Diabetiker: Diabetiker sowie chronische Dialysepatienten tragen aufgrund der vermehrten Pantothensäure-Ausscheidung ein erhöhtes Risiko für eine mangelhafte Pantothensäure-Versorgung.
• Chronisch Nierenerkrankte (Dialysepatienten)

Pantothensäure-Mangel kann zudem entstehen bei
• erhöhter Stressbelastung
• einseitiger Ernährung
• chronischen Erkrankungen (z.B. chronische Entzündungen, Darmerkrankungen)
• Medikamenteneinnahme

Mangelsymptome
Ein Mangel an Pantothensäure kann sich äußerst vielseitig äußern in:
• starken Stoffwechselstörungen
• Müdigkeit, Abgeschlagenheit, Schlaflosigkeit
• Depression, Reizbarkeit, Verwirrung, Lernschwäche, Schwindel
• Veränderungen von Haut und Schleimhäuten
• schlechte Wundheilung
• glanzlose Haare, frühes Ergrauen der Haare, Haarausfall
• geschwollene oder rote Zunge
• taube oder brennende Gefühle in den Füßen
• Gelenkschmerzen, Gelenksteife
• Muskelschmerzen oder Muskeltaubheit
• Herzklopfen
• Kopfschmerz
• Magenschmerzen, Durchfall, Erbrechen
• Immunschwäche (verminderte Wirkung von Immunzellen)
• Anämie

Ein Mangel an Pantothensäure findet selten isoliert statt sondern wird meist von anderen Vitamin-B-Mängeln begleitet.

Zufuhrempfehlung und Einnahmehinweise

Zufuhrempfehlung
Zur Behebung eines Mangels wird Pantothensäure in Dosen von 100 bis 200 mg täglich empfohlen.

Gegenanzeigen
• Pantothensäure ist auch in hohen Dosen (10 g) nicht toxisch.
• Bei behandlungsbedürftigen Erkrankungen, der Einnahme von Medikamenten und in der Schwangerschaft und Stillzeit ist mit dem behandelnden Arzt Rücksprache zu halten.

Literaturquellen

1. Aprahamian M, Dentinger A, Stock-Damge C, Kouassi JC, Grenier JF. Effects of supplemental pantothenic acid on wound healing: experimental study in rabbit. Am J Clin Nutr . 1985;41(3):578-89.
2. Arsenio L, Bodria P, Magnati G, Strata A, Trovato R.. Effectiveness of long-term treatment with pantethine in patients with dyslipidemia. Clin Ther . 1986;8:537–545.
3. Bertolini S, Donati C, Elicio N, et al. Lipoprotein changes induced by pantethine in hyperlipoproteinemic patients: adults and children. Int J Clin Pharmacol Ther Toxicol.1986;24:630–637.
4. Coronel F, Tornero F, Torrente J, et al. Treatment of hyperlipemia in diabetic patients on dialysis with a physiological substance. Am J Nephrol . 1991;11:32–36.
5. Food and Nutrition Board, Institute of Medicine. Pantothenic acid. Dietary Reference Intakes: Thiamin, Riboflavin, Niacin, Vitamin B-6, Vitamin B-12, Pantothenic Acid, Biotin, and Choline. Washington, D.C.: National Academy Press; 1998:357-373.Gaddi A, Descovich GC, Noseda G, et al. Controlled evaluation of pantethine, a natural hypolipidemic compound in patients with different forms of hyperlipoproteinemia. Atherosclerosis . 1984;50:73–83.
6. Haslam RH, Dalby JT, Rademaker AW. Effects of megavitamin therapy on children with attention deficit disorders. Pediatrics 1984;74:103-1.
7. Kimura S, Furukawa Y, Wakasugi J, Ishihara Y, Nakayama A.: Antagonism of L(-)pantothenic acid on lipid metabolism in animals. J Nutr Sci Vitaminol (Tokyo). 1980;26(2):113-7. PMID 7400861.
8. Lacroix B, Didier E, Grenier JF. Role of pantothenic and ascorbic acid in wound healing processes: in vitro study on fibroblasts. Int J Vitam Nutr Res . 1988;58(4):407-413.
9. Lewis CM, King JC. Effect of oral contraceptives agents on thiamin, riboflavin, and pantothenic acid status in young women. Am J Clin Nutr 1980;33(4):832-838.
10. Leung L (1995): Pantothenic acid deficiency as the pathogenesis of acne vulgaris. Med Hypotheses 44 (6): 490-2. PMID 7476595.
11. McCarty MF. Inhibition of acetyl-CoA carboxylase by cystamine may mediate the hypotriglyceridemic activity of pantethine. Med Hypotheses . 2001;56(3):314-317.
12. Meyer NA, Muller MJ, Herndon DN. Nutrient support of the healing wound. New Horizons . 1994;2(2):202-214.
13. MedlinePlus: Pantotheric acid (Vitamin-B5), Dexpanthenol. Natural Standard Research Collaboration. U.S. National Library of Medicine. Last accessed 4 Jan 2007.
14. Naruta E, Buko V. Hypolipidemic effect of pantothenic acid derivatives in mice with hypothalamic obesity induced by aurothioglucose. Exp Toxicol Pathol . 2001;53(5):393-398.
15. Nice C, Reeves AG, Brinck-Johnsen T, et al. The effects of pantothenic acid on human exercise capacity. J Sports Med Phys Fitness 1984;24(1):26-29.
16. Srinivasan V, Belavady B. Nutritional status of pantothenic acid in Indian pregnant and nursing women. Int J Vitam Nutr Res 1976;46(4):433-438.
17. Said H, Ortiz A, McCloud E, Dyer D, Moyer M, Rubin S (1998): Biotin uptake by human colonic epithelial NCM460 cells: a carrier-mediated process shared with pantothenic acid.. Am J Physiol 275 (5 Pt 1): C1365-71. PMID 9814986.
18. Walsh JH, Wyse BW, Hansen RG. Pantothenic acid content of 75 processed and cooked foods. J Am Diet Assoc 1981;78(2):140-144.
19. Weimann BI, Hermann D. Studies on wound healing: effects of calcium D-pantothenate on the migration, proliferation and protein synthesis of human dermal fibroblasts in culture. Int J Vitam Nutr Res . 1999;69(2):113-119.
20. White-O’Connor B, Sobal J. Nutrient intake and obesity in a multidisciplinary assessment of osteoarthritis. Clin Ther . 1986;9 Suppl B:30-42.

 

Weiterführende Quellen:

Wikipedia-Eintrag zu Pantothensäure

Pantothensäure-Artikel auf Vitaminwiki.net

 

Selen

Selen schützt die DNA (Erbsubstanz) der Zellen vor oxidativen Schäden

Beschreibung

Selen zählt zu den lebensnotwendigen (essentiellen) Spurenelementen und kommt in allen Körperzellen und -flüssigkeiten vor. Selen schützt die Erbsubstanz (DNA) sowie die Zellen vor oxidativen Stress und der Schädigung durch freie Radikale. Zudem fungiert Selen im Körper als Bestandteil von Enzymen, die für die Bildung der Schilddrüsenhormone benötigt werden, stärkt das Immunsystem und bindet Umweltschadstoffe.
Selen steht wie kein anderes Spurenelement, im Besonderen in der Krebsforschung, in der
Prophylaxe und der Komplementärtherapie, im wissenschaftlichen Fokus.

Der Selen-Bestand im Körper beträgt etwa 3 bis 15 Milligramm. Die höchsten Gehalte weisen Leber, Nieren, Milz, Gehirn, Keimdrüsen, insbesondere Testes (Hoden), Thrombozyten (Blutplättchen), Schilddrüse, Herz, Prostata und Muskeln auf.

Funktionen und Wirkungen

Funktionen
• Antioxidans (als Glutathion-Peroxidase)
• Immunmodulation und Stärkung des Immunsystems
• Aktivierung des Schilddrüsenhormons
• Schwermetallbindung
• Fortpflanzung

Wirkungen

Antioxidans
Die Hauptfunktion von Selen ist es, die Zellen vor schädlichen Belastungen zu bewahren. Selen schützt die Zellen und Chromosomen vor aggressiven Formen des Sauerstoffs (Peroxide) und vor freien Radikalen sowie vor Umwelt- wie auch Strahlenbelastungen. Selen ist essentieller Bestandteil des Schlüsselenzyms der körpereigenen Abwehr der Glutathion-Peroxidase. Dieses Enzym ist ein Zellschutzfaktor gegen aggressive Sauerstoffradikale, die durch äußere Einflüsse wie z.B. Umweltgifte, UV-Strahlungen, Rauchen sowie im normalen Stoffwechsel jedes Menschen gebildet werden. Glutathion-Peroxidase kann mit Hilfe von Selen Peroxide unschädlich machen.
Selen kann ebenfalls vor Karzinogenen, z.B. Nitrosaminen, Benzpyren und Aflatoxinen, schützen. Selen vermindert damit die frühzeitige Alterung der Zellen und stärkt das Immunsystem.

Immunstimulation

Selen ist für die Feinregulierung im Zusammenspiel der Immunzellen unersetzlich. Es besitzt als Stimulator der humoralen und zellulären Abwehr zahlreiche immunmodulierende Effekte. Selen stimuliert die Antikörperproduktion, insbesondere die Immunglobuline (IgG), den Tumor-Nekrose-Faktor (TNF) und erhöht die Zelltoxität der natürlichen Killerzellen und T-Lymphozyten (Immunzellen).
Ein Mangel an Selen, infolge einer unzureichenden Zufuhr, kann zu Beeinträchtigunen der immunologischen Abwehr des Körpers führen. Selendefizite wirken sich negativ auf die Aktivität der Glutathionsperoxidasen aus. Hierdurch kommt es zu einer verstärkten Radikalenbildung und gesteigerten Ansammlung von Lipidperoxiden, was mit einer erhöhten Bildung von entzündungsfördernden, immunschwächenden Botenstoffen (Prostaglandinen) einhergeht.

Aktivierung des Schilddrüsenhormons

Selen ist notwendig für den reibungslosen Schilddrüsenhormonstoffwechsel, genauer der Bildung des aktiven Schilddrüsenhormons Trijodthronin (T3) durch die Funktion des Enzyms Typ-I-Jodthyronin-5-Dejodase. Dieses Enzym ist für die Umwandlung und Aktivierung der Schilddrüsenhormone von Bedeutung. Ein Selenmangel führt aus diesem Grund zu einer Schilddrüsenunterfunktion.

Schwermetallbindung

Das Spurenelement Selen ist in der Lage, den Körper vor schädigenden Schwermetallen zu schützen. Selen geht mit Schwermetallen wie Quecksilber, Blei und Cadmium einen schwerlöslichen inaktiven Selenid-Komplex ein, und macht diese dadurch untoxisch.
Vor allem Leberzellen werden durch das Spurenelement vor diesen Toxinen geschützt
Bei zu hoher Belastung mit Schwermetallen benötigt der Körper mehr Selen, da es für die Schwermetallbindung verbraucht wird und nicht mehr ausreichend für seine weiteren Funktionen vorhanden ist.
Selen wird auch als therapeutischen Gegenmittel bei erhöhten Schwermetallbelastungen eingesetzt.

Fortpflanzung

Darüber hinaus ist Selen für die Zeugungsfähigkeit, genauer, die Entwicklung der Spermazellen (Spermatozyten) wichtig.

Komplementäre Therapie mit Selen
Komplementärtherapeutisch wird Selen bei Krebs, Herzkrankheiten, rheumatisch-arthritischen Erkrankungen, Fertilitätsstörungen, Immunschwächen und erhöhten Schwermetallbelastungen eingesetzt.

Selenversorgung und Bedarf

Viele Regionen Europas, darunter Deutschland sowie die Nachbarländer Österreich und Schweiz gehören aufgrund der niedrigen Selengehalte der Böden und den folglich geringen Selenkonzentrationen in den Lebensmitteln zu den Selenmangelgebieten. In der Folge sind die Selenzufuhren aus der Nahrung in Mitteleuropa zu gering. Die durchschnittliche mit der Nahrung täglich zugeführte Menge in Deutschland liegt zwischen 35 und 40 µg und ist nach der einschlägigen Meinung von Experten viel zu niedrig um den Bedarf zu decken.

Mehrbedarf
Risikogruppen für einen erhöhten Bedarf an Selen
– Senioren
– in der Schwangerschaft und Stillzeit
– bei geschwächten Immunsystem
– bei erhöhten Schwermetallbelastungen z.B. durch Rauchen
– bei Magen-Darm-Erkrankungen (durch gestörte Selenaufnahme)
– bei Diabetes mellitus
– bei Herzinfarkt und anderen Herzerkrankungen, z.B. Arteriosklerose
– bei Krebserkrankungen
– bei rheumatischen Erkrankungen
– bei Leber- und Bauchspeicheldrüsen-Erkrankungen

Zufuhrempfehlung und Hinweise

Zufuhrempfehlung
In Gebieten mit selenarmen Böden, wie Deutschland, Schweiz und Österreich, werden tägliche, langfristige präventive Gaben von 100 bis 200 µ Selen, möglichst zu den Mahlzeiten, empfohlen.

Hinweis für die Selen-Ergänzung: Unterschiedliche Bioverfügbarkeiten
Bei einer Nahrungsergänzung mit Selen sind organische Selen-Verbindungen (Selenhefe) qualitativ höher zu bewerten als anorganische (z.B. Natriumselenit). Der Grund: Natriumselenit wird unter dem Einfluss von Vitamin C (Ascorbinsäure) und Zink zu so genanntem elementaren roten Selen reduziert, welches nicht mehr vom Körper aufgenommen werden kann. Aus diesem Grund werden organischen Formen aus Selenhefe bevorzugt. Selenhefe enthält Selen so, wie es auch in naturbelassenen Nahrungsmitteln zu finden ist, ausschließlich aus organischen Selenverbindungen, insbesondere Selenomethionin und Selenocystein, bestehend. Wissenschaftliche Untersuchungen zeigten, dass diese organischen Selenformen eine um 70 % bessere Bioverfügbarkeit aufweisen als anorganisches Selenit.

Gegenanzeigen
Als sicher und nebenwirkungsfrei gilt eine Langzeitdosierung von bis zu 250 µg Selen (Tolerabel Upper Intake Level: 300 µg).


Literaturquellen

1. Borner J, Zimmermann T, Albrecht S, et al.: Selenium administration in severe inflammatory surgical diseases and burns in childhood. Med Klin;92 Suppl 3:17-19. (1997).
2. Clark LC, Dalkin B, Krongrad A, et al.: Decreased incidence of prostate cancer with selenium supplementation: results of a double-blind cancer prevention trial. Br J Urol;81(5):730-734. (1998).
3. Darlow BA, Winterbourn CC, Inder TE, et al.: The effect of selenium supplementation on outcome in very low birth weight infants: a randomized controlled trial. The New Zealand Neonatal Study Group. J Pediatr;136(4):473-480. (2000).
4. Duffield-Lillico AJ, Slate EH, Reid ME, et al.: Selenium supplementation and secondary prevention of nonmelanoma skin cancer in a randomized trial. J Natl Cancer Inst95(19):1477-1481. (2003).
5. Drobner, C., Anke, M., Thomas, G.: Selenversorgung und Selenbilanz Erwachsener in Deutschland. Anke, M. et al., H. Schubert, Leipzig (1996)
6. Etminan M, FitzGerald JM, Gleave M, et al.: Intake of selenium in the prevention of prostate cancer: a systematic review and meta-analysis.Cancer Causes Control. 2005 Nov;16(9):1125-31. (2005).
7. Fakih M, Cao S, Durrani FA, Rustum YM.: Selenium protects against toxicity induced by anticancer drugs and augments antitumor activity: a highly selective, new, and novel approach for the treatment of solid tumors.Clin Colorectal Cancer.5(2):132-5. (2005).
8. Hull CA, Johnson SM. A double-blind comparative study of sodium sulfacetamide lotion 10% versus selenium sulfide lotion 2.5% in the treatment of pityriasis (tinea) versicolor. Cutis;73(6):425-429. (2004).
9. Karunasinghe N, Ferguson LR, Tuckey J, et al.: Hemolysate thioredoxin reductase and glutathione peroxidase activities correlate with serum selenium in a group of New Zealand men at high prostate cancer risk. J Nutr.136(8):2232-5. (2006).
10. Klein EA. Clinical models for testing chemopreventative agents in prostate cancer and overview of SELECT: the Selenium and Vitamin E Cancer Prevention Trial. Recent Results Cancer Res;163:212-225. (2003).
11. Naziroglu M, Karaoglu A, Aksoy AO.: Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology.195(2-3):221-230. (2004).
12. Peretz A, Siderova V, Neve J.: Selenium supplementation in rheumatoid arthritis investigated in a double blind, placebo-controlled trial. Scand J Rheumatol 2001;30(4):208-212. (2001).
13. Rayman M, Thompson A, Warren-Perry M, et al.: Impact of selenium on mood and quality of life: a randomized, controlled trial.Biol Psychiatry. 15;59(2):147-54. (2006).
14. Stranges S, Marshall JR, Trevisan M, et al.: Effects of selenium supplementation on cardiovascular disease incidence and mortality: secondary analyses in a randomized clinical trial. Am J Epidemiol. 15;163(8):694-9. (2006).
15. Turker O, Kumanlioglu K, Karapolat I, et al.: Selenium treatment in autoimmune thyroiditis: 9-month follow-up with variable doses.J Endocrinol.190(1):151-6. (2006).
16. You WC, Brown LM, Zhang L, et al.: Randomized double-blind factorial trial of three treatments to reduce the prevalence of precancerous gastric lesions. J Natl Cancer Inst. (14):974-83. (1998).
17. Selenium, selenoproteins and human health: a review. Public Health Nutr. 4: 593-599 Burk R.F., Hill K.E., Motley A.K. (2003).
18. Selenoprotein metabolism and function: evidence for more than one function for selenoprotein P. J. Nutr. 133: 1517S-1520S (1993).
19. Deutsche Gesellschaft für Ernährung (DGE), Österreichische Gesellschaft für Ernährung (ÖGE), Schweizerische Gesellschaft für Ernährungsforschung (SGE), Schweizerische Vereinigung für Ernährung (SVE) Referenzwerte für die Nährstoffzufuhr. 1. Auflage 2000. Umschau Braus Verlag, Frankfurt am Main. (2000).
20. Kasper H. Ernährungsmedizin und Diätetik. 67-68 Urban & Fischer Verlag, 2004 Elsevier GmbH, München, Jena. (2004).
21. Leitzmann, C., Müller, C., Michel, P., Brehme, U., Hahn, A., Laube, H.: Ernährung in Prävention und Therapie. 75-77 2005 Hippokrates Verlag in MVS Medizinverlage Stuttgart GmbH & Co.KG. (2005).
22. Niestroj I.: Praxis der Orthomolekularen Medizin. 420-423 Hippokrates Verlag GmbH, Stuttgart. (2000).
23. Schmidt, Dr. med. E., Schmidt, N.: Leitfaden Mikronährstoffe. 292-301 Urban & Fischer Verlag; München. (2000).
24. Schrauzer G.N.: Selenomethionine: A review of its nutritional significance, metabolism and toxicity. J. Nutr. 130: 1653-1656(2000).
25. Sunde R.A.: Selenium. In: Present Knowledge in Nutrition. 8th ed. Bowman B.A., Russell R.M. (Eds.) ILSI Press, International Life Sciences Institute,Washington,DC. (2001).
26. Thomson Ch.D., Robinson M.F.,Butler J.A., Whanger P.D.: Long-term supplementation with selenate and selenomethionine: selenium and glutathione peroxidase ( EC 1.11.1,9) in blood components ofNew Zealand women. Br. J. Nutr. 69: 577-588. (1993).

 

Weiterführende Quellen:

Wikipedia-Eintrag zu Selen

Selen-Artikel auf Vitaminwiki.net

 

Cholin

Cholin dient der Synthese von Acetylcholin, einem wichtigen Nervenbotenstoff

Beschreibung

Cholin ist eine fettähnliche und lipotrope (am Fettstoffwechsel beteiligte) Verbindung, die in jeder menschlichen Körperzelle zu finden ist. Cholin bildet gemeinsam mit Inositol den „Nervenstoff“ Lecithin und ist für die Integrität der Zellmembranen verantwortlich. Essentielle Funktionen hat Cholin zudem im Nervensystem als Grundstoff des wichtigen Neurotransmitters Acetylcholin (für Gedächtnis- und Denkfähigkeit zuständig) sowie im Abtransport von Cholesterin und Fetten und damit dem Schutz der Leber. Obwohl der Körper geringe Mengen an Cholin selbst aus den Aminosäuren Methionin und Serin herstellen kann, muss Cholin zusätzlich über die Nahrung aufgenommen werden. Ein Mangel an Cholin kann die Folge verschiedener Faktoren sein und muss durch gezielte Supplementierung ausgeglichen werden um die Leber vor Fettanhäufung zu schützen und die Funktionalität des Nervensystems und der Zellenmembranen aufrecht zu erhalten.
Gedächtnis- und Lernstörungen sind ein spürbares Merkmal von Cholin-Mangel.

Funktionen und Anwendungsbereiche

Funktionen
• Synthese von Acetylcholin (Nervenbotenstoff)
• Integrität der Zellmembranen (Funktionsfähigkeit von Zellen)
• Fetttransport aus der Leber
• Ausscheidung von Giftstoffen

Synthese von Acetylcholin (Nervenbotenstoff)
Cholin ist essentieller Bestandteil des Neurotransmitters Acetylcholin, das im Gehirn und in den peripheren Zellen des Nervensystems synthetisiert wird. Acetylcholin ist einer der am häufigsten vorkommenden Neurotransmitter (Nervenbotenstoffe) und gewährleistet durch Weiterleitung von Nervenimpulsen (Reizübertragung) die geistige Funktionsfähigkeit, insbesondere das Gedächtnis- und Erinnerungsvermögen.
Acetylcholin
– fungiert als Botenstoff bei allen kognitiven Vorgängen wie den Konzentrations-, Gedächtnis- und Lernprozessen
– wirkt beruhigend und Stress abbauend

Integrität der Zellmembranen (Funktionsfähigkeit der Zellen)
Cholin wird als Bestandteil der Phospholipide beim Aufbau der Zellwände benötigt. Phospholipide sind Membranbestandteile, die die Funktionsfähigkeit von Zellen und Zellmembranen gewährleisten. In Gehirn-, Rückenmarks- und den peripheren Nervenzellen dient Cholin zudem dem Aufbau der schützenden Myelin-Ummantelung.

Fetttransport aus der Leber
Cholin dient als Bestandteil von Phospholipiden der Verarbeitung und dem Transport von Cholesterin und anderen Lipiden (Fetten) aus der Leber in die verschiedenen Körpergewebe. Ist der Cholin-Status zu niedrig, kommt es zur Einlagerung von Fetten in den Hepatozyten (Leberzellen) bis hin zur Fettleber, Leberfunktionsstörungen und akuten Leberschäden. Phosphatidylcholin ist zudem ein Emulgator der durch Zerlegung von Fetttröpfchen („Micellen“) die Fettverdauung im Dünndarm ermöglicht.

Ausscheidung von Giftstoffen
Cholin unterstützt das in der Leber ansässige Enzymsystem, das zur Entgiftung und zur Ausscheidung von Arzneimittel-Wirkstoffen, Karzinogenen und Umweltschadstoffen dient.

Anwendungsbereiche
• Morbus Alzheimer
• Bewegungsstörungen
• Verbesserung der Hirnfunktionen
• Alkoholkonsum
• Unterstützung der Leber
• Gallenstein-Prophylaxe
• Herz-Kreislauf-Störungen

Morbus Alzheimer

Untersuchungen an Morbus Alzheimer-Erkrankten ergaben, dass ihr Gehirn deutlich erniedrigte Cholin- und Acetylcholin-Konzentrationen aufwiesen. Cholin-Mangel führt zu steigender Durchlässigkeit und sinkender Integrität der Myelin-Ummantelung – die als schützende Isolationsschicht die Nervenzellen umgeben – sowie zur vermehrten Entstehung des nervenschädigenden Stoffs Amyloid. Durch die Erhöhung der Cholin-Zufuhr können die neuronalen Zellmembranen vor Strukturveränderungen und Funktionsverlust geschützt und der Acetycholin-Spiegel und damit die Gedächtnisfähigkeit direkt gesteigert werden.

Bewegungsstörungen

Häufige Folge eines gestörten Acetylcholin-Systems im Gehirn sind auch motorische Störungen der Bewegungsabläufe. Menschen mit Morbus Parkinson und anderen Neuropathien (Erkrankungen des Nervensystems), die zu Einschränkungen der Bewegungsfähigkeit führen, können von Cholin-Gaben daher profitieren.

Verbesserung der Hirnfunktionen
Cholin ist bei allen körpereigenen Prozessen des Gehirns involviert. Das Abrufen von Erinnerungen sowie das Einprägen neuer Informationen, also das Gedächtnisvermögen, spricht besonders auf die Supplementierung von Cholin an. Durch eine hohe Ausschüttung von Acetylcholin im Zentralnervensystem wird die Lern- und Gedächtnisleistung signifikant gesteigert.

Alkoholkonsum
Alkoholkonsum hat einen direkt senkenden Effekt auf den Cholin-Spiegel im Blut und in der Leber. Bei starkem Alkoholmissbrauch kann es daher zu Fettleber und Leberfunktionsstörungen kommen. Cholin kann Leberschäden zum Teil verringern und ablaufende Heilungs- und Regenerationsprozesse der Hepatozyten (Leberzellen) beschleunigen.

Unterstützung der Leber
Cholin stimuliert zudem die für die Entgiftung von Medikamenten, Alkohol und toxischen Umweltschadstoffen notwendigen Enzyme.

Gallenstein-Prophylaxe
Cholin vermindert Cholesterin-Ablagerungen in Form von Gallensteinen.

Herz-Kreislauf-Störungen
Cholin hat zwei positive Effekte auf das Herz-Kreislauf-System: Die Senkung der Cholesterin- und Triglyceridwerte: Dieser Mechanismus entlastet sowohl die Leber als auch die Gefäße. Zudem hat Cholin einen festigenden, Stabilität gebende Einfluss auf die Kapillarwände.

Erhöhter Bedarf und Mangel

Häufigste Ursachen für erhöhten Bedarf
• Geringe Zufuhr mit der Nahrung: Die tägliche Zufuhr von Cholin über die Nahrung gilt in Westeuropa als zu gering.
• Mangel an B-Vitaminen: Vor allem eine unzureichende Folsäure- oder Vitamin-B12-Zufuhr erhöhen den Cholin-Bedarf stark.
• Hoher Alkoholkonsum: Regelmäßiger Alkoholkonsum senkt direkt den Cholin-Gehalt des Körpers.
• Fettverdauungsstörungen: Bei Fettmalabsorption (Fettverdauungsstörungen) kann Cholin nur unzureichend aufgenommen werden.
• Chronische Erkrankungen: Verschiedene chronische Erkrankungen erhöhen das Risiko für einen Cholin-Mangel z.B. Darm-, Leber- und Bauchspeicheldrüsen-Erkrankungen.
• Wachstum: Der Cholin-Bedarf ist während der Schwangerschaft und Stillzeit erhöht

Mangelsymptome
• Störungen der Gedächtnis- und Konzentrationsleistungen
• Schlafstörungen
• Leberverfettung mit der Folge von Leberschäden
• erhöhtes Risiko für Leberkrebs
• gestörte Nierenfunktion
• verminderte Produktion von Erythrozyten (rote Blutkörperchen)
• Unfruchtbarkeit
• Bluthochdruck
• Ablagerung von LDL-Cholesterin in den Gefäßwänden (Arteriosklerose-Entwicklung)

Zufuhrempfehlung und Einnahmehinweise

Zufuhrempfehlung
Von der nationalen Akademie der Wissenschaften der Vereinigten Staaten (National Academy of Science, NAS) wird gesunden Menschen eine tägliche Zufuhr von 550 mg Cholin für Männer und 425 mg für Frauen empfohlen. Abhängig von der Indikation (Prävention/akute Erkrankungen) wird Cholin üblicherweise in einer Dosierung von 100 bis 2.500 mg pro Tag eingenommen.

Gegenanzeigen, Sicherheit
• Bei Dosierungen von bis zu 10 g Cholin täglich wurden keine Nebenwirkungen beobachtet.
• Bei behandlungsbedürftigen Erkrankungen, der Einnahme von Medikamenten und in der Schwangerschaft und Stillzeit ist zudem mit dem behandelnden Arzt Rücksprache zu halten.

Hinweise zur Einnahme
Für die Bildung des Neurotransmitters Acetylcholin haben sich kombinierte Einnahmen von Inositol und Cholin (im Verhältnis von 2:1) bewährt.
Die Tagesdosierung sollte über den Tag verteilt zu den Mahlzeiten eingenommen werden.

Literaturquellen

1. Alvarez XA, Mouzo R, Pichel V, et al.: Double-blind placebo-controlled study with
citicoline in APOE genotyped Alzheimer’s disease patients. Effects on cognitive performance, brain bioelectrical activity and cerebral perfusion. Methods Find Exp Clin Pharmacol. 1999;21:633-644.
2. Bierer, L.M. et al.: Neurochemical of dementia severity in Alzheimer´s disease relative importance of cholinergic deficits. J. Neurochem. 64 (1995) 749.
3. Bogden JD, Kemp FW, Han S, et al.: Status of selected nutrients and progression of human immunodeficiency virus type 1 infection. Am J Clin Nutr. 2000;72:809-815.
4. Buchman AL, Dubin M, Jenden D, et al.: Lecithin increases plasma free choline and decreases hepatic steatosis in long-term total parenteral nutrition patients. Gastroenterology. 1992;102:1363-1370.
5. Chanty, D.J., Zeisel, S.H.: Lecithin and cholin in human health and disease. Nutr. Rev. 52 (1994) 327.
6. Chawla RK, Wolf DC, Kutner MH, et al.: Choline may be an essential nutrient in malnourished patients with cirrhosis. Gastroenterology. 1989;97:1514-1520.
7. Cohen, B.M. et al.: Decreased brain choline uptake in older adults. JAMA 274 (1995) 902.
8. Crowdon, J.H.: Use of phosphatidylcholine in brain diseases: An overview. In: Hanin, I., Ansell, G.B. rapeutic Aspects. Plenum Press, New York 1987.
9. Cohen BM, Lipinski JF, Altesman RI, et al.: Lecithin in the treatment of mania: double-blind, placebo-controlled trials. Am J Psychiatry. 1982;139:1162-1164.
10. Cacabelos R, Alvarez XA, Franco-Maside A, et al.: Effect of CDP-choline on cognition and immune function in Alzheimer’s disease and multi-infarct dementia. Ann N Y Acad Sci. 1993;695:321-323.
11. Davalos A, Castillo J, Alvarez-Sabin J.: Oral citicoline in acute ischemic stroke: an individual patient data pooling analysis of clinical trials. Stroke. 2002;33:2850-2857.
12. De la Morena E.: Efficacy of CDP-choline in the treatment of senile alterations in memory. Ann N Y Acad Sci. 1991;640:233-236.
13. De Jesus Moreno Moreno M.: Cognitive improvement in mild to moderate Alzheimer’s dementia after treatment with the acetylcholine precursor choline alfoscerate: A multicenter, double-blind, randomized, placebo-controlled trial. Clin Ther. 2003;25:178-193.
14. Etienne P, Dastoor D, Gauthier S, et al.: Alzheimer disease: lack of effect of lecithin treatment for 3 months. Neurology. 1981;31:1552-1554.
15. Feldheim, W. et al.: Cholin und Phosphatidylcholin (Lecithin): lebensnotwendige Faktoren der Ernährung. Ernähr.-Umschau 41 (1994) 339.
16. Franco-Maside A, Caamano J, Gomez MJ, et al.: Brain mapping activity and mental performance after chronic treatment with CDP-choline in Alzheimer’s disease. Methods Find Exp Clin Pharmacol. 1994;16:597-607.
17. Gelenberg AJ, Dorer DJ, Wojcik JD, et al.: A crossover study of lecithin treatment of tardive dyskinesia. J Clin Psychiatry. 1990;51:149-153.
18. Guan R, Ho KY, Kang JY, et al.: The effect of polyunsaturated phosphatidyl choline in the treatment of acute viral hepatitis. Aliment Pharmacol Ther. 1995;9:699-703.
19. Heyman A, Schmechel D, Wilkinson W, et al.: Failure of long term high-dose lecithin to retard progression of early-onset Alzheimer’s disease. J Neural Transm Suppl. 1987;24:279-286.
20. Jacob RA, Jenden DJ, Allman-Farinelli MA, et al.: Folate nutriture alters choline status of women and men fed low choline diets. J Nutr. 1999;129:712-717.
21. Misra S, Ahn C, Ament ME, et al.: Plasma choline concentration in children requiring long-term home parenteral nutrition: a case control study. JPEN J Parenter Enteral Nutr. 1999;23:305-308.
22. Newman CM, Maseri A, Hackett D, El-Tamimi HM, Davies GJ.: Response of angiographically normal and atherosclerotic left anterior descending coronary arteries to acetylcholine. Am J Cardiol. 1990;66:1070–1076.
23. Niederau C, Strohmeyer G, Heintges T, et al.: Polyunsaturated phosphatidyl-choline and interferon alpha for treatment of chronic hepatitis B and C: a multi-center, randomized, double-blind, placebo-controlled trial. Leich Study Group. Hepatogastroenterology. 1998;45:797-804.
24. Newberne PM.: Lipotropic factors and oncogenesis. Adv Exp Med Biol. 1986;206:223-251.
25. Olthof MR, Brink EJ, Katan MB, et al.: Choline supplemented as phosphatidylcholine decreases fasting and postmethionine-loading plasma homocysteine concentrations in healthy men. Am J Clin Nutr. 2005;82:111-7.
26. Rogers AE.: Methyl donors in the diet and responses to chemical carcinogens. Am J Clin Nutr. 1995;61:S659-S665.
27. Stoll AL, Sachs GS, Cohen BM, et al.: Choline in the treatment of rapid-cycling bipolar disorder: clinical and neurochemical findings in lithium-treated patients. Biol Psychiatry. 1996;40:382-388.
28. Tayek JA, Bistrian B, Sheard NF, et al.: Abnormal liver function in malnourished patients receiving total parenteral nutrition: a prospective randomized study. J Am Coll Nutr. 1990;9:76-83.
29. Tousoulis D, Davies G, Lefroy DC, Haider AW, Crake T.: Variable coronary vasomotor responses to acetylcholine in patients with normal coronary arteriograms: evidence for localised endothelial dysfunction. Heart. 1996;75:261–266.
30. Tousoulis D, Crake T, Kaski JC, Rosen S, Haider A, Davies GJ.: Enhanced vasomotor responses of complex coronary stenoses to acetylcholine in stable angina pectoris. Am J Cardiol. 1995;75:725–728.
31. Tousoulis D, Tentolouris C, Crake T, Lefroy DC, Habib F, Toutouzas P, Davies GJ.: Segmental endothelium-dependent and endothelium-independent coronary vasodilator responses in patients with stable angina. Eur Heart J. 1996;17(suppl):464. Abstract.
32. Wainfan E, Poirier LA.: Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res. 1992;52:S2071-S2077.
33. Weintraub S, Mesulan MM, Auty R, et al.: Lecithin in the treatment of Alzheimer’s disease. Arch Neurol. 1983;40:527-528.
34. Zeisel, S.H., Blusztajn, J.K.: Choline and human nutrition. Ann. Rev. Nutr. 14 (1994) 269.

 

Weiterführende Quellen:

Phenylalanin

Phenylalanin: Ausgangsstoff zur Bildung der Neurotransmitter Dopamin, Noradrenalin und Adrenalin

Beschreibung

Phenylalanin ist eine unentbehrliche (essentielle) Aminosäure, die vom Körper zum reibungslosen Funktionieren benötigt wird. Von der Leber wird Phenylalanin zur Aminosäure Tyrosin umgewandelt. Tyrosin wiederum ist der Vorläufer für zentrale Neurotransmitter des Nervensystems (Botenstoffe zwischen den Nervenzellen) wie Dopamin, Noradrenalin und Adrenalin. Aber auch die Schilddrüsenhormone Thyroxin und Trijodthyreonin und das Hautpigment Melanin werden aus Tyrosin gebildet und sind vom Phenylalanin-Haushalt abhängig. Phenylalanin hat über seine Funktion im Neurotransmitter-Stoffwechsel große Bedeutung für ein intaktes und stabil funktionierendes Nervensystem und wird in der Therapie verschiedener Störungen des Nervensystems, unter anderem bei Morbus Parkinson, Alzheimer und Depression eingesetzt.
Phenylalanin tritt in zwei möglichen Formen auf: L-Phenylalanin ist die natürliche Form von Phenylalanin im Körper. D-Phenylalanin ist die künstliche Form der Aminosäure, und wird synthetisch hergestellt. Nahrungsergänzungen und therapiebegleitende Ergänzungen werden als L-Phenylalanin verabreicht.

Funktionen und Anwendungsbereiche

Funktionen
• Vorläuferstoff zur Bildung von Neurotransmittern (Dopamin, Noradrenalin, Adrenalin u.a.)
• Bildung der Schilddrüsenhormone (Thyroxin, Trijodthyronin)
• Melanin-Bildung (Hautpigmentierung)

Bildung von Neurotransmittern
Über die Blutzirkulation gelangt Phenylalanin zum Gehirn. Dort werden aus der Aminosäure die Nervenbotenstoffe Dopamin, Adrenalin, Noradrenalin, Serotonin und Tyramin gebildet. Phenylalanin hat über diesen Zusammenhang eine anregende, stimmungsaufhellende und nervenstabilisierende Wirkung und stärkt die kognitiven Hirnfunktionen wie das Konzentrations- und Gedächtnisvermögen. Auch wird durch Dopamin das Appetitempfinden reduziert und Heißhungerattacken vorgebeugt.

Anwendungsbereiche
• Depression
• Morbus Parkinson, Morbus Alzheimer/Demenz
• Vitiligo
• Multiple Sklerose
• Prämenstruelles Syndrom (PMS)
• allgemeiner Mangel an Aminosäuren durch bestimmte Krankheiten

Depression

Von Depression Betroffene profitieren von Phenylalanin-Gaben, da die Steigerung des Noradrenalin- und Adrenalinspiegels für Ausgleich und Stabilität des gestörten Neurotransmitter-Stoffwechsels sorgt. Stimmungsschwankungen verbessern sich und die nervliche Labilität geht zurück.

Morbus Parkinson, Morbus Alzheimer/Demenz
Bei Betroffenen von Morbus Parkinson liegt ein Mangel an Dopamin in bestimmten Hirnarealen vor. Phenylalain trägt bei langfristiger Ergänzung als Vorläuferstoff dazu bei, den Dopaminspiegel zu erhöhen und die Symptome von Morbus Parkinson zu beheben oder zu lindern.

Vitiligo

Die Krankheit Vitiligo, auch Weißfleckenkrankheit genannt, zeichnet sich durch eine unregelmäßige Pigmentierung oder weißen Flecken besonders der Gesichtshaut aus. In Kombination mit UV-Strahlung führt L-Phenalalanin zu einer Verdunkelung der nichtpigmentierten Hautareale.

Multiple Sklerose
Phenylalanin hat über die Stärkung des Nervensystems günstige Effekte bei der neurologischen Erkrankung Multiple Sklerose.

Prämenstruelles Syndrom (PMS)

Die aus Phenylalanin gebildeten Botenstoffe verbessern das Befinden beim Prämenstruellen Syndrom. Leichte Reizbarkeit, Erschöpfung und depressive Phasen werden gemindert.

Erhöhter Bedarf und Mangel

Der tägliche Bedarf eines gesunden Erwachsenen an Phenylalanin beträgt etwa 14 mg pro Kilogramm Körpergewicht.

Häufigste Ursachen für erhöhten Bedarf
• chronischer oder akuter Stress (z.B. durch Sport, Infektionen, Entzündungen)
• bei allgemeinem Mangel an Aminosäuren durch einseitige Ernährung oder Erkrankungen
• chronische Schmerzen
• Depressionen
• Morbus Parkinson

Mangelsymptome
• Stoffwechsel: gestörter Aminosäurestoffwechsel, gestörte Bildung von Proteinen
• Nervensystem: gestörte Neurotransmitter-Synthese, Dopamin-Mangel, Rückgang der geistigen, kognitiven Leistungsfähigkeit, gestörte Bildung der Myelin-Schicht (Isolierschutz der Nervenfasern) im Gehirn und dadurch erhöhtes Risiko für neurologische Schäden, geringe Stressresistenz
• Haut: Pigmentierungsstörungen
• Allgemein: Appetitverlust, Verwirrung, Energiemangel, verminderte Aufmerksamkeit, verringerter Appetit

Zufuhrempfehlung und Einnahmehinweise

Zufuhrempfehlung
Die übliche Phenylalanin-Dosierung liegt indikationsabhängig zwischen 100 und 2.000 mg. Therapeutisch verordnet sind auch höhere Dosen möglich. Die Dosierung von Phenylalanin erfolgt zu therapeutischen Zwecken und sollte nach therapeutischer Verordnung erfolgen.

Gegenanzeigen

Schwangeren und stillenden Frauen, Menschen mit der angeborenen Stoffwechselstörung Phenylketonurie (PKU) oder schweren Leberleiden sowie Schizophrenen wird die Ergänzung mit Phenylalanin nicht empfohlen. Bei behandlungsbedürftigen Erkrankungen und der Einnahme von Medikamenten sollte die Einnahme von Phenylalanin nur nach ärztlicher Absprache erfolgen.

Einnahmehinweise
Zur Unterstützung des Neurotransmitter-Stoffwechsels haben sich kombinierte Gaben von Phenylalanin und den Vitaminen des B-Komplexes (neurologisch aktive Vitamine!) bewährt.


Literaturquellen

1. Antoniou C, Katsambas A.: Guidelines for the treatment of vitiligo. Drugs. 1992;43(4):490-498.
2. Burkhart CG, Burkhart CN.: Phenylalanine with UVA for the treatment of vitiligo needs more testing for possible side effects. J Am Acad Dermatol . 1999;40(6 Pt 1):1015.
3. Camacho F, Mazuecos J.: Treatment of vitiligo with oral and topical phenylalanine: 6 years of experience. Arch Dermatol . 1999;135(2):216-217.
4. Cejudo-Ferragud E, Nacher A, Polache A, Ceros-Fortea T, Merino M, Casabo VG.: Evidence of competitive inhibition for the intestinal absorption of baclofen by phenylalanine. Int J Pharmaceutics . 1996;132:63-69.
5. Cormane RH, Siddiqui AH, Westerhof W, Schutgens RB.: Phenylalanine and UVA light for the treatment of vitiligo. Arch Dermatol Res . 1985;277(2):126-130.
6. Fugh-Berman A, Cott JM.: Dietary supplements and natural products as psychotherapeutic agents. Psychomatic Med . 1999;61:712-728.
7. Gardos G, Cole JO, Matthews JD, et al.: The acute effects of a loading dose of phenylalanine in unipolar depressed patients with and without tardive dyskinesia.
8. Neuropsychopharmacology. 1992;6:241-247.
9. Heller B.: Pharmacological and clinical effects of D-phenylalanine in depression and Parkinsons disease. In: Mosnaim AD, Wolf ME, eds. Noncatecholic Phenylethylamines. Part 1. New York, NY: Marcel Dekker; 1978:397-417.
10. Heller B, Fischer E, Martin R.: Therapeutic action of D-phenylalanine in Parkinson’s disease. Arzneimittelforschung. 1976;26:577-579.
11. Kovacs SO. Vitiligo. J Am Acad Dermatol. 1998 May;38(5 Pt 1):647-666.
12. Kravitz HM, Sabelli HC, Fawcett J.: Dietary supplements of phenylalanine and other amino acid precursors of brain neuroamines in the treatment of depressive disorders. J Am Osteopathic Assoc. 1984;84(suppl):119-123.
13. Meyers S. Use of neurotransmitter precursors for treatment of depression. Alt Med Rev . 2000;5(1):64-71.
14. Mosnik DM, Spring B, Rogers K, et al.: Tardive dyskinesia exacerbated after ingestion of phenylalanine by schizophrenic patients. Neuropsychopharmacology. 1997;16:136-146.
15. Pietz J.: Neurological aspects of adult phenylketonuria. Curr Opin Neurol . 1998;11:679–688.
16. Pietz J, Dunckelmann R, Rupp A, et al.: Neurological outcome in adult patients with early-treated phenylketonuria. Eur J Pediatr . 1998;157:824–830.
17. Rezvani I.: Defects in metabolism of amino acids; Phenylalanine. In: Behrman RE, Kliefman RM, and Jenson HB, eds. Nelson Textbook of Pediatrics . 16th ed. Philadelphia, PA: W.B. Saunders Company; 2000: 344-346.
18. Richardson MA. Amino Acids in Psychiatric Disease. Washington, DC: Psychiatric Press; 1990.
19. Sabelli HC, Fawcett J, Gusovsky F, et al.: Clinical studies on the phenylethylamine hypothesis of affective disorder: urine and blood phenylacetic acid and phenylalanine dietary supplements. J Clin Psychiatry . 1986;47:66-70.
20. Schallreuter KU, Zschiesche M, Moore J, et al.: In vivo evidence for compromised phenylalalanine metabolism in vitiligo. Biochem Biophys Res Commun . 1998;243(2):395-399.
21. Schulpis CH, Antoniou C, Michas T, Strarigos J.: Phenylalanine plus ultraviolet light: preliminary report of a promising treatment for childhood vitiligo. Pediat Dermatol . 1989;6(4):332-335.
22. Schulpis CH, Antoniou C, Michas T, et al.: Phenylalanine plus ultraviolet light: preliminary report of a promising treatment for childhood vitiligo. Pediatr Dermatol. 1989;6:332-335.
23. Siddiqui AH, Stolk LM, Bhaggoe R, et al.: L-phenylalanine and UVA irradiation in the treatment of vitiligo. Dermatology . 1994;188(3):215-218.
24. Siddiqui AH, Stolk LM, Bhaggoe R, et al.: L-phenylalanine and UVA irradiation in the treatment of vitiligo. Dermatology. 1994;188:215-218.
25. Werbach MR.: Nutritional Influences on Mental Illness: A Sourcebook of Clinical Research. Tarzana, CA: Third Line Press; 1991:141-142.
26. Winter A.: New treatment for multiple sclerosis. Neurol Orthop J Med Surg. 1984;5:39-43.
27. Woodward WR, Olanow CW, Beckner RM, et al.: The effect of L-dopa infusions with and without phenylalanine challenges in parkinsonian patients: Plasma and ventricular CSF L-dopa levels and clinical responses. Neurol . 1993;43:1704-1708.
28. Wood DR, Reimherr FW, Wender PH.: Treatment of attention deficit disorder with DL-phenylalanine. Psychiatry Res. 1985;16:21-26.

 

Weiterführende Quellen:

Wikipedia-Eintrag zu Phenylalanin

Phenylalanin-Artikel auf Vitaminwiki.net

 

 

Omega-3-Fettsäuren

Tiefsee-Fisch: Hauptquelle für wertvolle Omega-3-Fettsäuren, den Bestandteilen unserer Zellwände

Beschreibung

Die Omega-3-Fettsäuren gehören zu den mehrfach ungesättigten Fettsäuren (zusammen mit Omega-6- und Omega-9-Fettsäuren). Omega-3-Fettsäuren erfüllen wichtige Funktionen im Körper. Da sie lebensnotwendig sind und vom menschlichen Körper nicht selbst hergestellt werden können, sind sie essentiell und müssen mit der Nahrung zugeführt werden.
Die Omega-3-Fettsäuren erfüllen unentbehrliche Funktionen und besitzen in der Prävention und Therapie beinah aller chronisch-degenerativer Erkrankungen, der so genannten Zivilisationserkrankungen, ein hohes Potential.
Mehr als 9.000 klinische Studien wurden bislang über ihre Wirkungen durchgeführt. Sie sind Bestanteil der Zellmembranen, spielen eine bedeutende Rolle im Herz-Kreislauf-System sowie bei der Bildung von Nervenzellen, schützen die Netzhaut und übernehmen Regulierungsfunktionen für verschiedenste Prozesse des Körpers.

Zu den Omega-3-Fettsäuren gehören:
• Docosahexaensäure (DHA, docosahexaenoic acid)
• Eicosapentaensäure (EPA, eicosapentaenoic acid)
• Alpha-Linolensäure (ALA, alpha-linolenic acid)

Die Alpha-Linolensäure ist eine Vorstufe von DHA und EPA. Sie stammt aus pflanzlichen Quellen und ist in bestimmten Pflanzenölen enthalten (höchste Konzentration im Perilla-Öl).
Die langkettigen Omega-3-Fettsäuren Eicosapentaensäure und Docosahexaensäure stammen vor allem aus Kaltwasser-Fettfischen.

Funktionen und Anwendungsbereiche

Funktionen
• Bestandteil der Zellwände
• Bildung von Botenstoffen (Eicosanoiden)

Bestandteil der Zellwände
Omega-3-Fettsäuren sind unentbehrliche Bausteine jeder Zellmembran. In den Phospholipiden eingebaut dienen sie der Stabilisierung und Fluidität (Fließfähigkeit) der Zellmembran und ermöglichen damit die Zellfunktionen. Phospholipide sind in jeder Körperzelle, besonders hochkonzentriert in den Nervenzellen zu finden.

Bildung von Botenstoffen (Eicosanoide)
Omega-3-Fettsäuren sind essentielle Ausgangsstoffe für die Bildung von Eicosanoiden. Diese hormonähnlichen Reglersubstanzen senden in ihrer Funktion als Botenstoffe Signale an verschiedenen Körperzellen. Hierdurch nehmen sie Einfluss auf eine Vielzahl biologischer Prozesse und Systeme im Körper. Unter anderem regulieren sie Blutdruck, Blutgerinnung, Entzündungsprozesse, Immunreaktionen und Verdauungsvorgänge.
Aus diesen Aufgaben der Omega-3-Fettsäuren ergeben sich eine Vielzahl an Einsatzbereichen zur Vorbeugung und ergänzenden Behandlung. Hier davon die wichtigsten:

Ausgewählte Anwendungsbereiche
• Herz-Kreislauf-Schutz
– Senkung erhöhter Blutfettwerte
– Blutdrucksenkung und verbesserte Blutzirkulation
• Chronische Entzündungen
• Rheumatische Erkrankungen
• Diabetes mellitus
• Demenz, Alzheimer
• Depression
• Schwangerschaft und Stillzeit

Herz-Kreislauf-Schutz
Eine wichtige Eigenschaft von EPA und DHA ist das Reduzieren der Risikofaktoren für Herz-Kreislauf- und Gefäß-Erkrankungen (kardiovaskuläre Krankheiten). Omega-3-Fettsäuren senken erhöhte Blutdruck- und Blutfettwerte. Darüber hinaus verbessern sie die Fließeigenschaften des Blutes, verringern die Verklumpungsneigung der Blutplättchen und steuern dem Wachstum arteriosklerotischer Plaques (Gefäß-Ablagerungen) und deren Folgen, Herzinfarkt und Schlaganfall, entgegen. Die renommierte American Heart Association empfiehlt daher allen Menschen mit mehreren Risikofaktoren für koronare Herzkrankheiten täglich 1.000 mg EPA und DHA zu ergänzen.

Senkung erhöhter Blutfettwerte
Durch eine gesteigerte Aufnahme an Omega-3-Fettsäuren wird eine deutliche Senkung der Triglycerid- und LDL-Cholesterinwerte im Blut erzielt. Dabei wird das gute HDL-Cholesterin durch Omega-3-Fettsäuren leicht erhöht und das LDL-HDL-Verhältnis verbessert.

Blutdrucksenkung und verbesserte Blutzirkulation
Omega-3-Fettsäuren führen zur
– Verbesserung von Blutzirkulation (Gefäßerweiterung)
– Hemmung der Blutgerinnung
– Bildung von Stickoxid zur Vasodilatation (= Gefäßentspannung)
– Senkung des systolischen und diastolischen Blutdrucks

Die aus Omega-3-Fettsäuren gebildeten Eicosanoide (Thromboxane und Leukotriene) vermindern die Neigung zum Verklumpen von Blutplättchen (Thrombozytenaggregation) und verbessern die Fließeigenschaft des Blutes. Durch den Einbau der Omega-3-Fettsäuren in die Zellwand verbessert sich die Flexibilität der roten Blutkörperchen (Erythrozyten).

Chronische Entzündungen
EPA und DHA verringern die Anzahl entzündungsfördernder Botenstoffe wie der so genannten proinflammatorischen Zytokine. Omega-3-Fettsäuren haben sich bei der Mehrheit der chronisch-entzündlichen Erkrankungen wie rheumatischen Erkrankungen, Schuppenflechte, Neurodermitis und chronisch-entzündlichen Darmerkrankungen (Morbus Crohn, Colitis ulcerosa) als Ergänzung zur medizinischen Behandlung bewährt.

Rheumatische Erkrankungen

Rheumatische Erkrankungen sind gekennzeichnet durch Gelenkentzündungen, Schmerzen der Bewegungsorgane und stark eingeschränkter Beweglichkeit der Gelenke. Durch die Ergänzung an Omega-3-Fettsäuren können Gelenksteifigkeit und Gelenkschmerzen reduziert und die allgemeine Beweglichkeit deutlich verbessert werden. Bei Betroffenen, die sehr gut mit den Omega-3-Fettsäuren EPA und DHA versorgt sind, ist eine deutliche Minderung der Symptome zu beobachten und der Schmerzmittelbedarf ist reduziert.

Diabetes mellitus
Omega-3-Fettsäuren sind für Diabetiker mehrfach wichtig: 45 Prozent aller Diabetiker sterben an Herz-Kreislauf-Erkrankungen. Omega-3-Fettsäuren reduzieren alle wichtigen Risikofaktoren für Herzinfarkt und Schlaganfall. Sie verbessern außerdem insbesondere die Durchblutung der kleinen Kapillaren (z.B. in den Nieren und Augen) und schützen die Nervenzellen – drei Bereiche in denen Folgeerkrankungen durch jahrelangen Diabetes mellitus leider fast die Regel sind.

Demenz, Alzheimer
Die Docosahexaensäure (DHA) gilt als ein Schlüsselfaktor im Nervensystem. Das menschliche Gehirn besteht zur Hälfte aus ungesättigten Fettsäuren, bis zu 97 Prozent der vorliegenden Omega-3-Fettsäuren stellt die DHA dar. Diese Fettsäure ist wichtig für die Tätigkeit der Synapsen, der Umschaltstellen, durch die Nervenimpulse zwischen den Nervenzellen weitergeleitet werden. Gehirnzellen brauchen ausreichende Mengen an DHA um optimal zu funktionieren.
Forscher fanden heraus, dass DHA auch der Demenz-Entwicklung entgegensteuert. Als zentrales Molekül der Alzheimer-Erkrankung wurde die Eiweißverbindung Amyloid Beta 42 identifiziert. Die Docosahexaensäure verringert die Konzentration dieses nervenschädlichen Eiweißstoffs. Daneben spielen eine Steigerung der neuronalen Leistungsfähigkeit sowie oxidative und entzündungslindernde Eigenschaften der Omega-3-Fettsäuren eine tragende Rolle.

Augenerkrankungen
Die Retina (Netzhaut) besteht zu 60 Prozent aus ungesättigten Fettsäuren. 93 Prozent der Omega-3-Fettsäuren stellt die DHA dar, die ein integraler Bestandteil der Nervenzellmembranen im Auge ist. Die Omega-3-Fettsäuren hemmen die Entstehung der degenerativen Erkrankung AMD (Altersbedingte Makuladegeneration). DHA ist auch für das Augenpigment Rhodopsin essentiell, dem Sehfarbstoff, der Lichtsignale aufnimmt und damit das Sehen möglich macht.

Depression
In verschiedenen klinischen Studien zeigten sich die Konzentrationen an Omega-3-Fettsäuren in den Zellmembranen depressiver Menschen gegenüber denen von Gesunden deutlich erniedrigt. Gleichzeitig wurden bei den Betroffenen Störungen in der körpereigenen Herstellung ungesättigter Fettsäuren beobachtet. Auch bei anderen psychiatrischen Störungen wie Schizophrenie, bipolarer Störung und Manien wurde ein Mangel an Eicosapentaensäure und Docosahexaensäure nachgewiesen.

Schwangerschaft und Stillzeit
Schwangere und stillende Frauen sollten besonders auf eine adäquate Aufnahme von EPA und DHA achten. Sowohl der Embryo als auch der Säugling sind auf die Zufuhr von EPA und DHA angewiesen. 60 Prozent des menschlichen Gehirns gehen auf Fettsäuren zurück, wobei die Docosahexaensäure den größten Anteil ausmacht.
DHA-Mangel kann bei Frühgeborenen zu Störungen in der Entwicklung des Gehirns, des zentralen Nervensystems, des Sehvermögens und des Wachstums führen. Omega-3-Fettsäuren unterstützen die Lern-, Erinnerungs-, Denk- sowie Konzentrationsprozesse. Defizite in der DHA-Versorgung führen im vorgeburtlichen und frühkindlichen Wachstum zu Beeinträchtigungen der körperlichen und geistigen Entwicklung des Kindes.
Währen der gesamten Schwangerschaft und Stillzeit wird eine Ergänzung von 1.000 bis 3.000 mg EPA und DHA empfohlen.

Weitere Anwendungsgebiete von Omega-3-Fettsäuren:
Asthma, Multiple Sklerose, Dysmenorrhoe, Chronisch entzündliche Darmerkrankungen, entzündliche Hauterkrankungen (Akne, Psiorasis), Fettleber, Hyperaktivität (ADHS), Krebs, Migräne und Prämenstruelles Syndrom.


Erhöhter Bedarf und Mangel

Häufigste Ursachen für erhöhten Bedarf
• seefischarme Ernährung
• Zink-, Magnesium- und Vitamin B6-Mangel
• Alter
• Schwangerschaft und Stillzeit
• rasches Wachstum
• chronische Erkrankungen z.B.
– Fettmalabsorption
– erhöhte Blutfettwerte
– Leber- oder Gallenblasenerkrankungen
– Chronische Pankreatitis
– Entzündlich chronisch degenerative Erkrankungen wie Morbus Alzheimer, Multiple Sklerose, Rheuma, Psoriasis, Herz-Kreislauf-Erkrankungen

Mangelsymptome

• Störung der Gedächtnis-, Denk- und Konzentrationsfähigkeit
• Depression
• verminderte Sehfähigkeit, Trockenheit und Entzündungen der Augen
• gesteigerte Entzündungsreaktionen und Infektanfälligkeit
• trockene schuppige Haut, schlechte Wundheilung, Ekzeme bei Kindern
• neurologische Erkrankungen
• erhöhte Gefahr für chronisch-degenerative entzündliche Erkrankungen wie Herz-Kreislauf-Erkrankungen, rheumatische Erkrankungen und Allergien
• Aufmerksamkeits-Defizit-Syndrom mit/ohne Hyperaktivität (ADS/ADHS)
• Verhaltens-, Wachstums- und Entwicklungsstörungen bei Kindern


Zufuhrempfehlung und Einnahmehinweise


Zufuhrempfehlung

Die Versorgung an Omega-3-Fettsäuren gilt in weiten Bereichen Mitteleuropas, u.a. Deutschland, als unzureichend. Da Fischmahlzeiten allein nicht die benötigen Mengen an Omega-3-Fettsäuren liefern, empfehlen Mediziner und Ernährungswissenschaftler eine zusätzliche Ergänzung an Omega-3-Fettsäuren.

Die empfohlene Dosis zur Prävention liegt bei 800 bis 1.200 mg Omega-3-Fettsäuren (EPA und DHA) pro Tag.
Therapiebegleitend und unter therapeutischer Absprache sind Gaben von mehreren Gramm gewöhnlich.
Eine tägliche Aufnahme von über 3.000 mg sollte nur nach therapeutischer Absprache erfolgen.

Gegenanzeigen
Bei behandlungsbedürftigen Erkrankungen, der Einnahme von Medikamenten und in der Schwangerschaft und Stillzeit ist mit dem behandelnden Arzt Rücksprache zu halten.

Hinweise zur Einnahme

• Die Einnahme sollte zu den Mahlzeiten erfolgen.
• Therapeutische Erfolge werden nur bei langfristiger, regelmäßiger Einnahme erzielt.
• Fischöl-Präparate aus Tiefseefischen des Nordatlantiks gelten als besonders hochwertig und besitzen hohe Konzentrationen an EPA und DHA.


Literaturquellen

1. Andrew L. Stoll: The Omega-3 Connection: The Groundbreaking Antidepression Diet and Brain Program.
2. Angerer P, von Schacky: C. n-3 polyunsaturated fatty acids and the cardiovascular system. Curr Opin Lipidol. 2000;11(1):57-63.
3. Appel LJ.: Nonpharmacologic therapies that reduce blood pressure: a fresh perspective. Clin Cardiol. 1999;22(Suppl. III):III1-III5.
4. Arnold LE, Kleykamp D, Votolato N, Gibson RA, Horrocks L.: Potential link between dietary intake of fatty acid and behavior: pilot exploration of serum lipids in attention-deficit hyperactivity disorder . J Child Adolesc Psychopharmacol . 1994;4(3):171-182.
5. Adam O.: (1994) Entzündungshemmende Ernährung bei rheumatischen Erkrankungen. Ernährungs-Umschau 41:222-225
6. Broadhurst C.L. et al.: Rift Valley lake fish and shellfish provided brain-specific nutrition for early Homo. Br J Nutr (1998) 79: 3-21
7. Baumgaertel A.: Alternative and controversial treatments for attention-deficit/hyperactivity disorder. Pediatr Clin of North Am . 1999;46(5):977-992.
8. Belluzzi A, Boschi S, Brignola C, Munarini A, Cariani C, Miglio F.: Polyunsaturated fatty acids and inflammatory bowel disease. Am J Clin Nutr . 2000;71(suppl):339S-342S.
9. Billeaud C, Bougle D, Sarda P, et al.: Effects of preterm infant formula supplementation with alpha-linolenic acid with a linoleate/alpha-linolenate ratio of 6: a multicentric study. Eur J Clin Nutr. August 1997;51:520–527.
10. Boelsma E, Hendriks HF, Roza L.: Nutritional skin care: health effects of micronutrients and fatty acids. Am J Clin Nutr. 2001;73(5):853-864.
11. Bruinsma KA, Taren DL.: Dieting, essential fatty acid intake, and depression. Nutr Rev . 2000;58(4):98-108.
12. Burgess J, Stevens L, Zhang W, Peck L.: Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. Am J Clin Nutr. 2000; 71(suppl):327S-330S.
13. Cartwright I.J., Pockley A.G., Galloway J.H., Greaves M., Preston F.E.: (1985)
The effects of dietary omega-3- polyunsaturated fatty acids on erythrocyte membrane phospholipids, erythrocyte deformability and blood viscosity in healthy volunteers. Atherosclerosis 55: 267-281
14. Center for Perinatal Studies, Swedish Medical Center/Seattle, WA, USA:
Omega-3 fatty acids in maternal erythrocytes and risk of preeclampsia;
Williams M.A. et al. Epidemiology, 6 (3): 232-237, 1995 May
15. Connor W.E., Harris W.S., Goodnightjr. S.H.: (1982) The hypolipidemic and antithrombotic effects of salmon oil. Med Clin North Am Lipid Disord. 66: 518-529
16. Covault, J., et al., Association of a long-chain fatty acid-CoA ligase 4 gene polymorphism with depression and with enhanced niacin-induced dermal erythema. Am. J. Med. Genet. 127 (2004) 42 – 47.
17. Crawford M.A. et al.: The inadequacy of the essential fatty acid content of present preterm feeds. Europ J Pediatrics (1998) 157 (Suppl 1): S23-S27
18. Caron MF, White CM.: Evaluation of the antihyperlipidemic properties of dietary supplements. Pharmacotherapy. 2001;21(4):481-487.
19. Cho E, Hung S, Willett WC, et al.: Prospective study of dietary fat and the risk of age-related macular degeneration. Am J Clin Nutr . 2001;73(2):209-218.
20. Curtis CL, Hughes CE, Flannery CR, Little CB, Harwood JL, Caterson B.: N-3 fatty acids specifically modulate catabolic factors involved in articular cartilage degradation. J Biol Chem. 2000;275(2):721-724.
21. David Servan-Schreiber (Hrsg.): Kapitel 9: Die Revolution der Omega-3-Fettsäuren. In: Die neue Medizin der Emotionen. 10. Auflage, S. 155-178 (Behandelt Omega-3-Fettsäuren, insbesondere die Anwendung bei Depressionen).
22. Danao-Camara TC, Shintani TT.: The dietary treatment of inflammatory arthritis: case reports and review of the literature. Hawaii Med J. 1999;58(5):126-131.
23. DeDeckere EA, Korver O, Verschuren PM, Katan MB.: Health aspects of fish and n-3 polyunsaturated fatty acids from plant and marine origin. Eur J Clin Nutr. 1998;52:749–753.
24. de Lorgeril M, Renaud S, Mamelle N, et al.: Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet. 1994;343:1454–1459.
25. de Logeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N.: Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation . 1999;99(6):779-785.
26. De-Souza DA, Greene LJ.: Pharmacological nutrition after burn injury. J Nutr . 1998;128:797-803.
27. Deutch B.: Menstrual pain in Danish women correlated with low n-3 polyunsaturated fatty acid intake. Eur J Clin Nutr. 1995;49(7):508-516.
28. Edwards R, Peet M, Shay J, Horrobin D.: Omega-3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients. J Affect Disord. 1998;48:149–155.
29. Espersen G.T., Grunnet N., Lervang H.H., Nielsen G.L., Thomsen B.S., Faarvang K.L., Dyerberg J., Ernst E. (1992): Decreased interleukin-1 beta levels in plasma from rheumatiod arthritis patients after dietary supplementation with n-3 polyunsaturated fatty acids. Clin. Rheumatol. 11: 393-395
30. Frieri G, Pimpo MT, Palombieri A, et al.: Polyunsaturated fatty acid dietary supplementation: an adjuvant approach to treatment of Helicobacter pylori infection. Nutr Res. 2000;20(7):907-916.
31. Geerling BJ, Badart-Smook A, van Deursen C, et al.: Nutritional supplementation with N-3 fatty acids and antioxidants in patients with Crohn’s disease in remission: effects on antioxidant status and fatty acid profile. Inflamm Bowel Dis. 2000;6(2):77-84.
32. Geerling BJ, Houwelingen AC, Badart-Smook A, Stockbrügger RW, Brummer R-JM.: Fat intake and fatty acid profile in plasma phospholipids and adipose tissue in patients with Crohn’s disease, compared with controls. Am J Gastroenterol . 1999;94(2):410-417.
33. GISSI-Prevenzione Investigators.: Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet . 1999;354:447-455.
34. Harper CR, Jacobson TA.: The fats of life: the role of omega-3 fatty acids in the prevention of coronary heart disease. Arch Intern Med. 2001;161(18):2185-2192.
35. Harris WS.: N-3 fatty acids and serum lipoproteins: human studies. Am J Clin Nutr. 1997;65:1645S-1654S .
36. Hibbeln JR, Salem N, Jr.: Dietary polyunsaturated fatty acids and depression: when cholesterol does not satisfy. Am J Clin Nurt. 1995;62(1):1-9.
37. Horrobin DF. The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophr Res. 1998;30(3):193-208.
38. Horrobin DF, Bennett CN.: Depression and bipolar disorder: relationships to impaired fatty acid and phospholipid metabolism and to diabetes, cardiovascular disease, immunological abnormalities, cancer, ageing and osteoporosis. Prostaglandins Leukot Essent Fatty Acids. 1999;60(4):217-234.
39. Hrboticky N, Zimmer B, Weber PC.: Alpha-Linolenic acid reduces the lovastatin-induced rise in arachidonic acid and elevates cellular and lipoprotein eicosapentaenoic and docosahexaenoic acid levels in Hep G2 cells. J Nutr Biochem . 1996;7:465-471.
40. Hu FB, Stampfer MJ, Manson JE et al.: Dietary intake of alpha-linolenic acid and risk of fatal ischemic heart disease among women. Am J Clin Nutr . 1999;69:890-897.
41. Geusens P. et al.: Arthritis and Metabolic Bone Disease Research Unit, K.U. Leuven,
U.Z. Pellenberg, Belgium Arthritis und Rheumatism. 37 (6): 824-829, 1994 June
42. Hahn A.: Nahrungsergänzungsmittel. 206-210 Wissenschaftliche Verlagsgesellschaft mbH Stuttgart 2001
43. Hornstra G. et al.: Essential fatty acids in pregnancy and early human development. Eur J Obstretics Gynaecol Reproductive Biology (1995) 20: 57-62
44. Leaf A., Kang J.X., Xiao Y.F., Billman G.E.: (1999) N-3 fatty acids in the prevention of cardiac arrhythmias. Lipids 34 (Suppl): S187-S189
45. Hornstra G. et al.: Essential fatty acids in pregnancy and early human development.
Eur J Obstretics Gynaecol Reproductive Biology (1995) 20: 57-62
46. N-3 fatty acids in the prevention of cardiac arrhythmias. Lipids 34 (Suppl): S187-S189
47. Maes M., Christophe A., Bosmans E. et al.: In humans, serum polyunsaturated fatty acid levels predict the response of proinflammatory cytokines to psychological stress. Biol Psychiatry 2000; 47: 910-920
48. Meydani S.N. (1996) Effect of n-3 polyunsaturated fatty acids on cytokine production and their biologic function. Nutrition 12: S8-S14
49. Peet M., Murphy B., Shay J., Horrobin D.: Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol Psychiatry 1998; 43: 315-9
50. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: Results of the GISSI-Prevenzione trial. Lancet 354: 447-455
51. Hahn, A. Ströhl: Omega-3-Fettsäuren. In: Chemie in Unserer Zeit. 38, 2004, S. 310-318.
52. Jeschke MG, Herndon DN, Ebener C, Barrow RE, Jauch KW.: Nutritional intervention high in vitamins, protein, amino acids, and omega-3 fatty acids improves protein metabolism during the hypermetabolic state after thermal injury. Arch Surg. 2001;136:1301-1306.
53. Juhl A, Marniemi J, Huupponen R, Virtanen A, Rastas M, Ronnemaa T.: Effects of diet and simvastatin on serum lipids, insulin, and antioxidants in hypercholesterolemic men; a randomized controlled trial. JAMA. 2002;2887(5):598-605.
54. Krauss RM, Eckel RH, Howard B, Appel LJ, Daniels SR, Deckelbaum RJ, et al.: AHA Scientific Statement: AHA dietary guidelines revision 2000: A statement for healthcare professionals from the nutrition committee of the American Heart Association. Circulation. 2000;102(18):2284-2299.
55. Kremer JM.: N-3 fatty acid supplements in rheumatoid arthritis. Am J Clin Nutr. 2000;(suppl 1):349S-351S.
56. Kris-Etherton P, Eckel RH, Howard BV, St. Jeor S, Bazzare TL.: AHA science advisory: Lyon diet heart study. Benefits of a Mediterranean-style, National Cholesterol Education Program/American Heart Association Step I dietary pattern on cardiovascular disease. Circulation. 2001;103:1823-1825.
57. Kris-Etherton PM, Taylor DS, Yu-Poth S, et al.: Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr . 2000;71(1 Suppl):179S-188S.
58. Kuroki F, Iida M, Matsumoto T, Aoyagi K, Kanamoto K, Fujishima M.: Serum n3 polyunsaturated fatty acids are depleted in Crohn’s disease. Dig Dis Sci. 1997;42(6):1137-1141.
59. Lockwood K, Moesgaard S, Hanioka T, Folkers K.: Apparent partial remission of breast cancer in ‘high risk’ patients supplemented with nutritional antioxidants, essential fatty acids, and coenzyme Q10. Mol Aspects Med. 1994;15Suppl:s231-s240.
60. Lorenz-Meyer H, Bauer P, Nicolay C, Schulz B, Purrmann J, Fleig WE, et al.: Omega-3 fatty acids and low carbohydrate diet for maintenance of remission in Crohn’s disease. A randomized controlled multicenter trial. Study Group Members (German Crohn’s Disease Study Group). Scan J Gastroenterol. 1996;31(8):778-785.
61. Marangell, L. B., et al., A double-blind, placebo-controlled study of the omega-3 fatty acid docosahexaenoic acid in the treatment of major depression. Am. J. Psychiatry 160 (2003) 996 – 998.
62. Makrides, M., et al., Docosahexaenoic acid and post-partum depression – is there a link? Asia. Pac. J. Clin. Nutr. 12, Suppl. (2003) 37.
63. McGuffin M, Hobbs C, Upton R, et al, eds.: Botanical Safety Handbook. Boca Raton, FL: CRC Press; 1997.
64. Mayser P, Mrowietz U, Arenberger P, Bartak P, Buchvald J, Christophers E, et al.: Omega-3 fatty acid-based lipid infusion in patients with chronic plaque psoriasis: results of a double-blind, randomized, placebo controlled, multicenter trial. J Am Acad Dermatol. 1998;38(4):539-547.
65. Mitchell EA, Aman MG, Turbott SH, Manku M.: Clinical characteristics and serum essential fatty acid levels in hyperactive children. Clin Pediatr (Phila). 1987;26:406-411.
66. Nestel PJ, Pomeroy SE, Sasahara T, et al.: Arterial compliance in obese subjects is improved with dietary plant n-3 fatty acid from flaxseed oil despite increased LDL oxidizability. Arterioscler Thromb Vasc Biol . July 1997;17(6):1163-1170.
67. Newcomer LM, King IB, Wicklund KG, Stanford JL.: The association of fatty acids with prostate cancer risk. Prostate. 2001;47(4):262-268.
68. Nemets, B., et al., Addition of omega-3 fatty acid to maintenance medication treatment for recurrent unipolar depressive disorder. Am. J. Psychiatry 159 (2002) 477 – 479.
69. Okamoto M, Misunobu F, Ashida K, Mifune T, Hosaki Y, Tsugeno H, et al.: Effects of dietary supplementation with n-3 fatty acids compared with n-6 fatty acids on bronchial asthma. Int Med. 2000;39(2):107-111.
70. Okamoto M, Misunobu F, Ashida K, Mifune T, Hosaki Y, Tsugeno H et al.: Effects of perilla seed oil supplementation on leukotriene generation by leucocytes in patients with asthma associated with lipometabolism. Int Arch Allergy Immunol. 2000;122(2):137-142.
71. Prasad K.: Dietary flaxseed in prevention of hypercholesterolemic atherosclerosis. Atherosclerosis. 1997;132(1):69–76.
72. Prisco D, Paniccia R, Bandinelli B, et al.: Effect of medium term supplementation with a moderate dose of n-3 polyunsaturated fatty acid on blood pressure in mild hypertensive patients. Thromb Res. 1998;91:105-112.
73. Peet, M., et al., Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol. Psychiatry 43 (1998) 315 – 319.Richardson AJ, Puri BK.: The potential role of fatty acids in attention-deficit/hyperactivity disorder. Prostaglandins Leukot Essent Fatty Acids . 2000;63(1/2):79-87.
74. Shils ME, Olson JA, Shike M, Ross AC.: Modern Nutrition in Health and Disease. 9th ed. Baltimore, Md: Williams & Wilkins; 1999:90-92, 1377-1378.
75. Shoda R, Matsueda K, Yamato S, Umeda N.: Therapeutic efficacy of N-3 polyunsaturated fatty acid in experimental Crohn’s disease. J Gastroenterol. 1995;30(Suppl 8):98-101.
76. Simopoulos AP.: Essential fatty acids in health and chronic disease. Am J Clin Nutr. 1999;70(30 Suppl):560S-569S.
77. Simopoulos AP.: Human requirement for N-3 polyunsaturated fatty acids. Poult Sci. 2000;79(7):961-970.
78. Soyland E, Funk J, Rajka G, Sandberg M, Thune P, Ruistad L, et al.: Effect of dietary supplementation with very-long chain n-3 fatty acids in patients with psoriasis. NEJM. 1993;328(25):1812-1816.
79. Stampfer MJ, Hu FB, Manson JE, Rimm EB, Willett WC.: Primary prevention of coronary heart disease in women through diet and lifestyle. 2000;343(1):16-22.
80. Stevens LJ, Zentall SS, Abate ML, Kuczek T, Burgess JR.: Omega-3 fatty acids in boys with behavior, learning and health problems.1996;59(4/5):915-920.
81. Stoll BA.: Breast cancer and the Western diet: role of fatty acids and antioxidant vitamins. Eur J Cancer. 1998;34(12):1852-1856.
82. Sellmayer A., Hrboticky N., Weber P.C.: (1996) n-3-Fettsäuren in der Prävention kardiovaskulärer Erkrankungen. Ernährungs-Umschau 43 (4): 122-128
83. Skölstam L., Börjesson O., Kjällman A., Seiving B., Akesson B.: (1992) Effect of six month of fish oil supplementation in stable rheumatoid arthritis. A double-blind, controlled study. Scand J Theumatol 21: 178-185
84. Sperling R.I., Weinblatt M., Robin J.L.: (1987) Effects of dietary supplementation with marine fish oil on leucocyte lipid mediator generation and function in rheumatoid arthritis. Arth and Rheum 30: 988
85. Staedt U., Kirschstein W., Simiander S., Kuhn C., Aufenanger J., Holm E.: (1989)
Effect of low dose omega-3 fatty acids on blood pressure, blood lipids and blood fluidity in patients with hyperlipoproteinemia. Vasa Suppl. 27: 253-254
86. Schmidt K.: (1998) Omega-3-Fettsäuren. Nutritive und präventive Aspekte.
Vitaminspur 13: 58-64
87. Sellmayer A., Hrboticky N., Weber P.C.: (1996) n-3-Fettsäuren in der Prävention kardiovaskulärer Erkrankungen. Ernährungs-Umschau 43 (4): 122-128
88. Skölstam L., Börjesson O., Kjällman A., Seiving B., Akesson B.: (1992)
Effect of six month of fish oil supplementation in stable rheumatoid arthritis. A double-blind, controlled study. Scand J Theumatol 21: 178-185
89. Su, K. P., et al., Omega-3 fatty acids in major depressive disorder. A preliminary double-blind, placebo-controlled trial. Eur. Neuropsychopharmacol. 13 (2003) 267 – 271.
90. Sperling R.I., Weinblatt M., Robin J.L.: (1987) Effects of dietary supplementation with marine fish oil on leucocyte lipid mediator generation and function in rheumatoid arthritis. Arth and Rheum 30: 988
91. Staedt U., Kirschstein W., Simiander S., Kuhn C., Aufenanger J., Holm E.:(1989)
Effect of low dose omega-3 fatty acids on blood pressure, blood lipids and blood fluidity in patients with hyperlipoproteinemia. Vasa Suppl. 27: 253-254
92. Stoll, A. L., et al., Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial. Arch. Gen. Psychiatry. 56 (1999) 407 – 412.
93. The report of the British Nutrition Foundations Task Force: Unsaturated fatty acids, nutritional and physiological significance. Chapman and Hall (1992) 20: 157 Valagussa F. (1999)
94. Tsujikawa T, Satoh J, Uda K, Ihara T, Okamoto T, Araki Y, et al.: Clinical importance of n-3 fatty acid-rich diet and nutritional education for the maintenance of remission in Crohn’s disease. J Gastroenterol. 2000;35(2):99-104.
95. von Schacky C, Angere P, Kothny W, Theisen K, Mudra H.: The effect of dietary omega-3 fatty acids on coronary atherosclerosis: a randomized, double-blind, placebo-controlled trial. Ann Intern Med . 1999;130:554-562.
96. Valagussa F.: (1999) Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: Results of the GISSI-Prevenzione trial.
Lancet 354: 447-455
97. Voskuil DW, Feskens EJM, Katan MB, Kromhout D.: Intake and sources of alpha-linolenic acid in Dutch elderly men. Eur J Clin Nutr. 1996;50:784–787.
98. Yehuda S, Rabinovitz S, Carasso RL, Mostofsky DI.: Fatty acids and brain peptides. Peptides. 1998;19:407–419.
99. Zambón D, Sabate J, Munoz S, et al.: Substituting walnuts for monounsaturated fat improves the serum lipid profile of hypercholesterolemic men and women. Ann Intern Med. 2000;132:538-546.

 

Weiterführende Quellen:

Wikipedia-Eintrag zu Omega-3-Fettsäuren